392 research outputs found
Anthropogenic influence on recent circulation-driven Antarctic sea-ice changes
Observations reveal an increase of Antarctic sea ice over the past three decades, yet global climate models tend to simulate a sea-ice decrease for that period. Here, we combine observations with model experiments (MPI-ESM) to investigate causes for this discrepancy and for the observed sea-ice increase. Based on observations and atmospheric reanalysis, we show that on multi-decadal time scales Antarctic sea-ice changes are linked to intensified meridional winds that are caused by a zonally asymmetric lowering of the high-latitude surface pressure. In our simulations, this surface-pressure lowering is a response to a combination of anthropogenic stratospheric ozone depletion and greenhouse gas increase. Combining these two lines of argument, we infer a possible anthropogenic influence on the observed sea-ice changes. However, similar to other models, MPI-ESM simulates a surface-pressure response that is rather zonally symmetric, which explains why the simulated sea-ice response differs from observations
Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology's Earth system model
We describe the evolution of Arctic sea ice as modeled by the Max Planck Institute for Meteorology's Earth System Model (MPI-ESM). The modeled spatial distribution and interannual variability of the sea-ice cover agree well with satellite observations and are improved relative to the model's predecessor ECHAM5/MPIOM. An evaluation of modeled sea-ice coverage based on sea-ice area gives, however, conflicting results compared to an evaluation based on sea-ice extent and is additionally hindered by uncertainties in the observational record. Simulated trends in sea-ice coverage for the satellite period range from more strongly negative than observed to positive. The observed evolution of Arctic sea ice is incompatible with modeled internal variability and probably caused by external forcing. Simulated drift patterns agree well with observations, but simulated drift speed is generally too high. Simulated sea-ice volume agrees well with volume estimates of the PIOMAS reanalysis for the past few years. However, a preceding Arctic wide decrease in sea-ice volume starts much earlier in MPI-ESM than in PIOMAS. Analyzing this behavior in MPI-ESM's ocean model MPIOM, we find that the modeled volume trend depends crucially on the specific choice of atmospheric reanalysis forcing, which casts some doubt on the reliability of estimates of volume trends. In our CMIP5 scenario simulations, we find a substantial delay in sea-ice response to increasing CO2 concentration; a seasonally ice-free Arctic can result for a CO2 concentration of around 500 ppm. Simulated winter sea-ice coverage drops rapidly to near ice-free conditions once the mean Arctic winter temperature exceeds â5°C
Immobilized RuâPincer Complexes for Continuous GasâPhase LowâTemperature Methanol ReformingâImproving the Activity by a Second RuâComplex and Variation of Hydroxide Additives
Ru-pincer complexes were immobilized as supported liquid phase (SLP) materials to allow the methanol reforming reaction as continuous gas phase process. Under reaction conditions, the liquid phase forms from the hydroxide coating. Several hydroxides were screened and CsOH showed highest activity compared to the standard KOH coating. The well-known Ru-pincer complex carbonylchlorohydrido [bis(2-di-i-propylphosphinoethyl)amine]ruthenium(II) is limited in catalyzing the final step of the methanol reforming. Addition of a second complex, having a methylated backbone in the pincer-ligand, could overcome these limitations. Significant enhancement of the overall catalytic activity was observed
Biomimetic mono- and dinuclear Ni(I) and Ni(II) complexes studied by X-ray absorption and emission spectroscopy and quantum chemical calculations
Five biomimetic mono- or dinuclear nickel complexes featuring Ni(I) or Ni(II) sites were studied by X-ray absorption and emission spectroscopy and DFT calculations. Ni K-edge XANES spectra and KÎČ main and satellite emission lines were collected on powder samples. The pre-edge absorption transitions (core-to-valence excitation) and KÎČ2,5 emission transitions (valence-to-core decay) were calculated using DFT (TPSSh/TZVP) on crystal structures. This yielded theoretical ctv and vtc spectra in near-quantitative agreement with the experiment, showing the adequacy of the DFT approach for electronic structure description, emphasizing the sensitivity of the XAS/XES spectra for ligation/redox changes at nickel, and revealing the configuration of unoccupied and occupied valence levels, as well as the spin-coupling modes in the dinuclear complexes. XAS/XES-DFT is valuable for molecular and electronic structure analysis of synthetic complexes and of nickel centers in H2 or COx converting metalloenzymes.Peer Reviewe
Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes
Haumann C, Pelargus C, Frey HG, et al. Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes. Review of scientific instruments. 2005;76(3): 033704.Near-field optical applications require the fast, stable, and reproducible fabrication of scanning near-field optical microscopy (SNOM) aperture probes in the submicrometer range. We have developed a stand-alone device for the electrolytic etching of nanoapertures with an integrated current and optical transmission monitoring and control. Probes with an aperture ranging from 50 to 100 nm were reproducibly fabricated with great reliability. With these probes, high resolution SNOM images of 100 nm test patterns and single dye molecules (Rhodamine 6G in poly(vinyl alcohol)) are measured and presented. Not requiring a SNOM setup, the stand-alone device is not only inexpensive and compact, but also insensitive to external disturbances
Dynamical Interaction between Atmosphere and Sea Ice in Antarctica
Abstract Sea ice that covers large parts of the polar oceans throughout most of the year responds to changes in the atmosphere or the ocean within a short period of time. The rapid decrease of the Arctic sea ice cover in the past decades has led to a fundamental discussion of the role of sea ice in the climate system. Surprisingly, in contrast to the northern hemisphere, the sea ice in the Southern Ocean has been slightly increasing over the last decades. This is owing to essentially different processes that take place around Antarctica. There, the ice is not confined to a basin as in the Arctic Ocean but can move rather freely around the Antarctic continent which results in a strong response to changes in the wind field. In this Master's thesis I examined the impact of the variations in the coastal Antarctic atmospheric boundary layer on the sea ice. By studying wind driven sea ice transport in the Southern Ocean and temporal and spatial variabilities in the period 1989 to 2006, I have revealed important characteristics of the sea ice cover and processes that determine its growth and decay. The near surface wind field over the coastal continent and ocean as well as its forcing mechanisms were described in detail by using output from a regional atmospheric climate model. This showed strong relations to key parameters that I have deduced from a satellite record of sea ice concentration and sea ice motion. The regions of the largest sea ice extent, the Ross and Weddell Seas, are also those areas where most of the sea ice transport takes place and where its variability is the largest. Interannual variations and trends of transport are associated with varying sea ice concentration just north of these areas in the Ross and Weddell Seas. Comparing the wind field and the sea ice motion, I found out that spatial patterns of persistent southerly or south-easterly winds coincide with those of ice drift. The winds in these regions result from combined effects of the large-scale pressure distribution, cold air that accumulates over the ice shelves, and large topographic barriers that alter the flow. Adjacent to the large Ross and Ronne-Filchner Ice Shelves constant outflow of cold air takes place almost year-round. Here, sea ice is constantly exported from the coastal region, and large polynyas and leads form. As the cold winds not only lead to sea ice transport but also support refreezing of the open water, these areas are associated with strong sea ice formation. I have defined an index that captures the outflow of cold continental air from the ice shelves. The long-term variations in outflow correlate well with variations of the sea ice cover and meridional sea ice transport in the Ross and western Weddell Seas. Further, the results suggest that the positive trend of sea ice cover in western Ross Sea and the negative trend in the western Weddell Sea are related to a respective seasonal increase and decrease of cold air outflow. Overall, in my thesis, I showed that the dynamical interaction between the atmospheric boundary layer and the sea ice is a regional key element in the interannual variability and the long-term changes of the sea ice cover in the Southern Ocean
Spectroscopic Properties of a Biologically Relevant [Fe2(Ό-O)2] Diamond Core Motif with a Short Iron-Iron Distance
Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since FeâFe distances of 2.5â3.4â
Ă
were attributed to âopenâ or âclosedâ cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII2(ÎŒ-O)2 complex (2) with tetrahedral (4C) centres and short FeâFe distance (2.52â
Ă
), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short FeâÎŒâO bonds. A â2.5â
Ă
FeâFe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2(ÎŒ-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short FeâFe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology
The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design
As the climate warms, the grounded ice sheet and floating ice shelves surrounding Antarctica are melting and releasing additional freshwater into the Southern Ocean. Nonetheless, almost all existing coupled climate models have fixed ice sheets and lack the physics required to represent the dominant sources of Antarctic melt. These missing ice dynamics represent a key uncertainty that is typically unaccounted for in current global climate change projections. Previous modelling studies that have imposed additional Antarctic meltwater have demonstrated regional impacts on Southern Ocean stratification, circulation, and sea ice, as well as remote changes in atmospheric circulation, tropical precipitation, and global temperature. However, these previous studies have used widely varying rates of freshwater forcing, have been conducted using different climate models and configurations, and have reached differing conclusions on the magnitude of meltwaterâclimate feedbacks. The Southern Ocean Freshwater Input from Antarctica (SOFIA) initiative brings together a team of scientists to quantify the climate system response to Antarctic meltwater input along with key aspects of the uncertainty. In this paper, we summarize the state of knowledge on meltwater discharge from the Antarctic ice sheet and ice shelves to the Southern Ocean and explain the scientific objectives of our initiative. We propose a series of coupled and oceanâsea ice model experiments, including idealized meltwater experiments, historical experiments with observationally consistent meltwater input, and future scenarios driven by meltwater inputs derived from stand-alone ice sheet models. Through coordinating a multi-model ensemble of simulations using a common experimental design, open data archiving, and facilitating scientific collaboration, SOFIA aims to move the community toward better constraining our understanding of the climate system response to Antarctic melt.</p
Operando tracking of oxidation-state changes by coupling electrochemistry with time-resolved X-ray absorption spectroscopy demonstrated for water oxidation by a cobalt-based catalyst film
Transition metal oxides are promising electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), which is critical in electrochemical production of non-fossil fuels. The involvement of oxidation state changes of the metal in OER electrocatalysis is increasingly recognized in the literature. Tracing these oxidation states under operation conditions could provide relevant information for performance optimization and development of durable catalysts, but further methodical developments are needed. Here, we propose a strategy to use single-energy X-ray absorption spectroscopy for monitoring metal oxidation-state changes during OER operation with millisecond time resolution. The procedure to obtain time-resolved oxidation state values, using two calibration curves, is explained in detail. We demonstrate the significance of this approach as well as possible sources of data misinterpretation. We conclude that the combination of X-ray absorption spectroscopy with electrochemical techniques allows us to investigate the kinetics of redox transitions and to distinguish the catalytic current from the redox current. Tracking of the oxidation state changes of Co ions in electrodeposited oxide films during cyclic voltammetry in neutral pH electrolyte serves as a proof of principle
Electron Transfer from Cyt b559 and Tyrosine-D to the S2 and S3 states of the water oxidizing complex in Photosystem II at Cryogenic Temperatures
The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P-680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y-D) and Cytochrome b (559) (Cyt b (559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b (559) and Y-D to the S-2 and S-3 states at 195 K. First, Y-D (aEuro cent) and Cyt b (559) were chemically reduced. The S-2 and S-3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S-1 state. EPR signals of the WOC (the S-2-state multiline signal, ML-S-2), Y-D (aEuro cent) and oxidized Cyt b (559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S-2 population decayed to S-1 in the S-2 samples by following a single exponential decay. Differently, S-3 samples showed an initial increase in the ML-S-2 intensity (due to S-3 to S-2 conversion) and a subsequent slow decay due to S-2 to S-1 conversion. In both cases, only a minor oxidation of Y-D was observed. In contrast, the signal intensity of the oxidized Cyt b (559) showed a two-fold increase in both the S-2 and S-3 samples. The electron donation from Cyt b (559) was much more efficient to the S-2 state than to the S-3 state
- âŠ