33 research outputs found

    Down-Dip Termination of the Carboniferous Ross Fan System in the Inner Shannon Area, Western Ireland - New Insight from Core and Outcrop

    Get PDF
    IAS Annual Meeting, 20 - 24 June 2015Scattered outcrops and limited borehole data in the inner Shannon estuary and mid-Clare are critical to constrain the down-dip extension of the Ross system. Previous outcrop studies have described a much thinner Ross section at Inishcorker and Foynes (over 50 km east of the Ross type section on the Loop Head) involving only the youngest Ross cycles in the west. A re-interpretation of the inner Shannon outcrops is now possible given a new GSI 09/04 borehole in the Inishcorker area, a re-analysis of Foynes Island sections and new biostratigraphic dat

    Interpreting syndepositional sediment remobilization and deformation beneath submarine gravity flows; a kinematic boundary layer approach

    Get PDF
    Turbidite sandstones and related deposits commonly contain deformation structures and remobilized sediment that might have resulted from post-depositional modification such as downslope creep (e.g. slumping) or density-driven loading by overlying deposits. However, we consider that deformation can occur during the passage of turbidity currents that exerted shear stress on their substrates (whether entirely pre-existing strata, sediment deposited by earlier parts of the flow itself or some combination of these). Criteria are outlined here, to avoid confusion with products of other mechanisms (e.g. slumping or later tectonics), which establish the synchronicity between the passage of overriding flows and deformation of their substrates. This underpins a new analytical framework for tracking the relationship between deformation, deposition and the transit of the causal turbidity current, through the concept of kinematic boundary layers. Case study examples are drawn from outcrop (Miocene of New Zealand, and Apennines of Italy) and subsurface examples (Britannia Sandstone, Cretaceous, UK Continental Shelf). Example structures include asymmetric flame structures, convolute lamination, some debritic units and injection complexes, together with slurry and mixed slurry facies. These structures may provide insight into the rheology and dynamics of submarine flows and their substrates, and have implications for the development of subsurface turbidite reservoirs

    Flow transformations and mud partitioning across submarine fan fringes

    Get PDF
    Highly efficient sediment gravity flows can bypass mid-fan channels and lobes and deposit significant volumes of sand, mud, and particulate organic matter in outer-fan and basin-plain settings. The Serpukhovian to Bashkirian fill in the Shannon Basin, western Ireland, includes deep-water fan deposits (Ross Sandstone Fm) that gradationally overlie basin-floor shales (Clare Shale Fm). As part of a broader progradational succession, the upward transition from muddy basin floor to sandy fan preserves the stacked deposits of settings present prior to, and outboard of, mid-fan channels and lobes. Three fully cored boreholes and associated wireline data constrain the facies tracts in an 18-km-long panel oriented oblique to original depositional dip. Two distal successions dominated by hybrid event beds (HEBs) are recognized, separated by a prominent condensed section. The lower Cos-heen system includes m-thick, tabular HEBs with prominent linked debrites that pass down dip into much thinner sandstones overlain by sand-speckled mudstone caps that thicken distally before thinning. The latter are interpreted as secondary mudflows released following reconstitution of more thoroughly mixed sections of the up-dip linked debrites. Significant bypass and accumulation of mud by this mechanism helped heal local topography and maintain a relatively flat sea floor, promoting an overall tabular geometry for the deposits of larger volume hybrid flows reaching the distal sector of the basin. The overlying distal Ross system fringe is characterized by very fine- to fine-grained sandstones and is lateral to compensationally stacked lobes farther to the west. It has a progradational (at least initially) stacking pattern, facies transitions developed over shorter length scales, and includes outsized event beds, but these are thinner than those in the Cosheen system. Common banding and evidence for turbulence suppression by dispersed clay rather than entrained mud clasts indicate that these were transitional flows. In this case, event beds are inferred to taper distally, with significant mud emplaced by plug flow retained as caps to sandy event beds rather than bypassing down-dip. Different flow transformation mechanisms thus impacted how mud was partitioned across the fringe of the two systems, and this influenced bed geometries, larger scale bed stacking patterns, and stratigraphy. Whereas the flow-efficiency concept stresses the ability of flows to carry sand in a basinward direction, it is also imperative to consider the variable efficiency of mud transport given the operation of clay-induced flow transformations. These can either promote bypass or trigger premature fallout of mud, with implications for how systems fill accommodation, bed-scale facies transitions, and the burial and preservation of particulate organic carbon fractionated along with the clay in deep-water system fringes.Science Foundation IrelandGeological Survey Ireland (GSI) Griffith Geoscience AwardEquinor AS

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Drainage reorganization during breakup of Pangea revealed by in-situ Pb isotopic analysis of detrital K-feldspar

    Get PDF
    The Pb isotopic composition of detrital K-feldspar grains can be rapidly measured using laser ablation MC-ICPMS. The feldspar Pb signal can survive weathering, transport and diagenesis, and careful targeting avoids problems with inclusions and alteration. As common Pb isotopic compositions show broad (100s km scale) variation across the continents, the method provides a powerful provenance tracer for feldspathic sandstones. Here we combine a new Pb domain map for the circum-North Atlantic with detrital feldspar Pb isotopic data for Triassic and Jurassic sandstones from basins on the Irish Atlantic margin. The Pb compositions reveal otherwise cryptic feldspar populations that constrain the evolving drainage pattern. Triassic sandstones were sourced from distant Archean and Paleoproterozoic rocks, probably in Greenland, Labrador and Rockall Bank to the NW, implying long (>500 km) transport across a nascent rift system. Later Jurassic sandstones had a composite Paleo- and Mesoproterozoic source in more proximal sources to the north (<150 km away). Little or no feldspar was recycled from Triassic into Jurassic sandstones, and the change in provenance is consistent with distributed, low relief Triassic extension in a wide rift, followed by narrower Jurassic rifting with more localised fault-controlled sediment sources and sinks.Not applicablePetroleum Infrastructure Programme (PIP)Enterprise Irelan

    Drainage reorganization during breakup of Pangea revealed by in-situ Pb isotopic analysis of detrital K-feldspar

    No full text
    The Pb isotopic composition of detrital K-feldspar grains can be rapidly measured using laser ablation MC-ICPMS. The feldspar Pb signal can survive weathering, transport and diagenesis, and careful targeting avoids problems with inclusions and alteration. As common Pb isotopic compositions show broad (100s km scale) variation across the continents, the method provides a powerful provenance tracer for feldspathic sandstones. Here we combine a new Pb domain map for the circum-North Atlantic with detrital feldspar Pb isotopic data for Triassic and Jurassic sandstones from basins on the Irish Atlantic margin. The Pb compositions reveal otherwise cryptic feldspar populations that constrain the evolving drainage pattern. Triassic sandstones were sourced from distant Archean and Paleoproterozoic rocks, probably in Greenland, Labrador and Rockall Bank to the NW, implying long (>500 km) transport across a nascent rift system. Later Jurassic sandstones had a composite Paleo- and Mesoproterozoic source in more proximal sources to the north (<150 km away). Little or no feldspar was recycled from Triassic into Jurassic sandstones, and the change in provenance is consistent with distributed, low relief Triassic extension in a wide rift, followed by narrower Jurassic rifting with more localised fault-controlled sediment sources and sinks.Not applicablePetroleum Infrastructure Programme (PIP)Enterprise Irelan

    Sedimentology, sandstone provenance and palaeodrainage on the eastern Rockall Basin margin : evidence from the Pb isotopic composition of detrital K-feldspar

    Get PDF
    The Rockall Basin, west of Ireland, is a frontier area for hydrocarbon exploration but currently the age and location of sand fairways through the basin are poorly known. A recently developed provenance approach based on in-situ Pb isotopic analysis of single K-feldspar grains by laser ablation multi-collector inductively-coupled mass spectrometry (LA-MC-ICPMS) offers advantages over other provenance techniques, particularly when applied to regional palaeodrainage issues. K-feldspar is a relatively common, usually first-cycle framework mineral in sandstones and its origin is typically linked to that of the quartz grains in arkosic and sub-arkosic rocks. Consequently, in contrast to other techniques, the Pb-in-K-feldspar tool characterises a significant proportion of the framework grains. New Pb isotopic data from K-feldspars in putative Permo-Triassic and Middle Jurassic sandstones in Well 12/2-1z (the Dooish gas condensate discovery) on the eastern margin of the Irish Rockall Basin are reported. These data suggest that three isotopically distinct basement sources supplied the bulk of the K-feldspar in the reservoir sandstones and that the relative contribution of these sources varied through time. Archaean and early Proterozoic rocks (including elements of the Lewisian Complex and its offshore equivalents), to the immediate east, north-east and north of the eastern Rockall Margin, are the likely sources. More distal sourcelands to the north-west cannot be ruled out but there was no significant input from southern sources, such as the Irish Massif. These data, together with previously published regional Pb isotopic data, highlight the important role played by old, near and far-field Archaean – Proterozoic basement highs in contributing sediment to NE Atlantic margin basins. The Irish Massif appears to have acted as a significant, but inert, drainage divide from the Permo-Triassic to the Late Jurassic and hence younger, Avalonian and Variscan, sand sources appear to have been less important on the Irish Atlantic Margin.Science Foundation IrelandGriffiths Geoscience Awar

    Sedimentology of the upper Ross Formation (Pennsylvanian) in borehole GSI 09/05 at Ballybunion, Co. Kerry

    No full text
    Irish Geological Research Meeting, March 1 - 3, 2013, University of Ulster, Magee College, Derry, Northern IrelandThe Pennsylvanian Ross Sandstone Formation is well exposed around the Shannon Estuary, in western Ireland. It forms the deep-water part of a major shallowing-upward succession filling the Clare Basin and it has been extensively used as a turbidite reservoir analogue and for subsurface training.   Since 2009, a major program of behind-outcrop drilling targeting the Ross Sandstone Formation has been undertaken in west Co. Clare (Loop Head) and across the Shannon estuary in Co. Kerry. To date, most of the focus has been on boreholes acquired on Loop Head. These have provided a composite vertical section through the Ross Sandstone Formation and a framework for interpreting bed type variations and overall system evolution. Now, the emphasis is changing to examine lateral variability away from Loop Head using a new core at Ballybunion in the lowermost Ross Sandstone Formation, together with legacy data and two recent GSI slim-holes (at Inishcorker and Ballybunion).   This poster focuses on first results from the GSI 09/05 borehole, located c.4.3 km north of Ballybunion town. This 150 m long slim-hole core intersects the upper Ross Formation as confirmed by correlation with a measured outcrop section on the adjacent cliff c.1.2 km away. Correlation is based on goniatite-rich "marine bands", distinctive thick sandstone units and slump bodies. Three marine bands are identified, the uppermost being unusually thick (c.4.5 m) and provisionally equated with the R. paucicrenulatum band marking the top of the Ross Sandstone Formation on Loop Head. The core records an upward transition from well-bedded sandstones (turbidites and subordinate hybrid event beds) interpreted as stacked lobe deposits to more amalgamated sandstones towards the top of the formation indicating increased channelisation. A major composite slump body (25 m thick) occurs below the central marine band. This remobilised both sand-prone and silty deposits and is significantly thicker than any of the slump units identified in the Loop Head cores and outcrop.Four-year Griffith Geoscience funded PhD StudentshipFour-year Griffith Geoscience funded PhD StudentshipConference website: http://www.igrm2013.info/AD 08/01/201

    Hierarchical parameterization and compression-based object modelling of high net: gross but poorly amalgamated deep-water lobe deposits

    No full text
    Deepwater lobe deposits are arranged hierarchically and can be characterized by high net:gross ratios but poor sand connectivity due to thin but laterally extensive shale layers. This heterogeneity makes them difficult to represent in standard full-field object-based models, since the sands in an object-based model are not stacked compensationally and become connected at a low net:gross ratio. The compression algorithm allows generation of low connectivity object-based models at high net:gross ratios, by including the net: gross and amalgamation ratios as independent input parameters. Object-based modelling constrained by the compression algorithm has been included in a recursive workflow, permitting generation of realistic models of hierarchical lobe deposits. Representative dimensional and stacking parameters collected at four different hierarchical levels have been used to constrain a 250 m thick, 14 km2 model that includes hierarchical elements ranging from 20 cm thick sand beds to 30+ m thick lobe complexes. Sand beds and the fine-grained units are represented explicitly in the model, and the characteristic facies associations often used to parameterize lobe deposits are emergent from the modelling process. The model is subsequently resampled without loss of accuracy for flow simulation, and results show clearly the influence of the hierarchical heterogeneity on drainage and sweep efficiency during a water-flood simulation.University College DublinPIPCO RSG Ltd.FIFT II joint industry projectChina Scholarship CouncilUpdate citation details during checkdate report - A
    corecore