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ABSTRACT 9 

Pb isotopes in detrital K-feldspar grains provide a powerful provenance tracer for 10 

feldspathic sandstones. Common Pb isotopic compositions show broad (100s km scale) 11 

regional variation and this signature can survive weathering, transport and diagenesis. 12 

The feldspar Pb signature can be measured rapidly using laser ablation MC-ICPMS and 13 

careful targeting avoids inclusions and altered regions within grains. Here we combine a 14 

new Pb domain map for the circum-North Atlantic with detrital K-feldspar Pb isotopic 15 

data for Triassic and Jurassic sandstones from basins on the Irish Atlantic margin. The Pb 16 

isotopic compositions reveal otherwise cryptic feldspar populations that constrain the 17 

evolving drainage pattern. Triassic sandstones were sourced from distant Archean and 18 

Paleoproterozoic rocks, probably in Greenland, Labrador and Rockall Bank to the NW, 19 

implying long (>500 km) transport across a nascent rift system. Later Jurassic sandstones 20 

had a composite Paleo- and Mesoproterozoic source in more proximal sources to the 21 

north (<150 km away). No recognizable feldspar was recycled from Triassic into Jurassic 22 
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sandstones, and the change in provenance is consistent with distributed, low relief 23 

Triassic extension in a wide rift, followed by narrower Jurassic rifting with more 24 

localized fault-controlled sediment sources and sinks. 25 

Keywords: K-feldspar, Pb isotopes, provenance, paleodrainage, Pangea. 26 

INTRODUCTION 27 

Sandstone provenance helps constrain the scale and pattern of ancient drainage, 28 

and is a key tool in facies prediction and paleogeographic reconstructions. A wide range 29 

of techniques can be used to assess the source of sand grains, but not all yield definitive 30 

results. It can be difficult to see through recycling and mixing, particularly where the 31 

grains are robust and make-up a tiny fraction of the sand, as in the case of zircon. In 32 

addition, the use of a trace mineral requires detailed characterization of the sourcelands 33 

against which to compare the detritus. Denudation may have completely removed the 34 

source rocks and contemporaneity of magmatic events in unrelated terranes can lead to 35 

ambiguity as grains of a given age may come from more than one source area. 36 

A new method, based on in situ Pb isotopic analysis of single K-feldspar grains by 37 

laser ablation MC-ICPMS (Tyrrell et al., 2006) offers some advantages over other 38 

techniques. K-feldspar is a relatively common, generally first-cycle, framework mineral 39 

in sandstones. Importantly, K-feldspar contains negligible U and Th, hence its Pb isotopic 40 

composition does not change significantly over time. Furthermore, Pb in basement rocks 41 

shows broad regional variations (due to different ages and variations in U-Pb-Th 42 

fractionation) and is likely to be consistent between the upper and middle crust and thus 43 

insensitive to erosion level. Hence Pb isotopic mapping is used to identify important 44 

crustal boundaries (Connelly and Thrane, 2005. Potential source areas can therefore be 45 
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characterised by a relatively small number of K-feldspar or galena analyses. Two 46 

orientation studies have shown that the Pb isotopic composition of feldspar sand grains is 47 

relatively robust, as it can survive weathering, transport and diagenesis (Tyrrell et al., 48 

2006). Targeted laser sampling within individual sand grains avoids internal 49 

heterogeneities (e.g., inclusions, altered regions within grains), avoiding some of the 50 

uncertainties inherent in multi-grain or the single-grain leaching techniques previously 51 

employed to determine Pb isotopes in detrital K-feldspar (e.g., Hemming et al., 1996) and 52 

MC-ICPMS offers better precision that ion microprobe techniques (Clift et al., 2001). 53 

The Pb provenance method is used here to explore drainage evolution prior to and 54 

during the break-up of Pangea, when opening of the North Atlantic stranded remnants of 55 

early rift basins on the conjugate passive margins. Here we focus on basins offshore 56 

western Ireland, combining a new circum-Atlantic Pb domain map (Fig. 1) with Pb 57 

isotopic data from K-feldspar in Triassic and Jurassic sandstones. Together, these data (1) 58 

constrain the scale of the drainage, with implications for the depositional setting and 59 

hinterland geology; (2) shed new light on the drainage orientation and source location; (3) 60 

demonstrate major drainage reorganisation driven by a change in rift style, and (4) 61 

suggest minimal recycling of Triassic sand into Jurassic depocenters. 62 

MESOZOIC BASINS WEST OF IRELAND 63 

Pangean break-up west of Ireland involved polyphase rifting associated with 64 

collapse of the Variscan orogenic belt and protracted crustal extension along the Atlantic 65 

margin (Naylor and Shannon, 2005). The Slyne, Erris and Donegal basins originally 66 

formed as part of a distributed network of Permo-Triassic depocenters (Dancer et al., 67 

1999) as a consequence of wide extensional rifting (Praeg, 2004). Some of these basins 68 
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were internally drained, while others were fed by large rivers, such as those flowing 69 

northwards from the trans-Pangean Variscan uplands (Audley-Charles, 1970). Sand-rich 70 

Triassic successions have been drilled in the basins west of Ireland, and have been 71 

identified seismically in the Porcupine and Rockall basins (Walsh et al., 1999, Naylor and 72 

Shannon, 2005). In the Slyne Basin, Triassic sandstones, thought to be equivalent to the 73 

Sherwood Sandstone of NW Europe, host the Corrib gas field and comprise fine- to 74 

medium-grained arkosic fluvial and alluvial sandstones with sub-ordinate sand-flat and 75 

playa mudstone deposits (Dancer et al., 2005). Previous interpretations based on dipmeter 76 

logs, petrography and whole-rock geochemistry suggested sand derivation from the 77 

Variscan uplands to the south with additional input from the Irish Mainland (Dancer et 78 

al., 2005). 79 

The Porcupine Basin, southwest of the Slyne Basin (Fig. 1), includes a Jurassic 80 

sequence deposited during a phase of “narrow” extensional rifting (Croker and Shannon, 81 

1987, Naylor and Shannon, 2005). In the northern part of the basin, an Upper Jurassic 82 

(Kimmeridgian-Tithonian) sequence of north-derived low-energy fluvial (meandering 83 

river) and marginal marine facies is replaced southwards by shallow marine sandstones 84 

and deep-water turbiditic fans (Butterworth et al., 1999, Williams et al., 1999). 85 

Petrography suggests a source including granites, basic intrusives and metasedimentary 86 

rocks (Geraghty, 1999) of uncertain location. 87 

SAMPLING AND METHODOLOGY 88 

Medium-grained sandstones were sampled from cored Triassic intervals in two 89 

Slyne Basin wells (18/25–1 and 18–20–2z; Fig. 1) and from Upper Jurassic intervals in 90 

two wells from the northern Porcupine Basin (26/28–1 and 35/8–2; Fig. 1). 91 
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The Pb isotopic composition of sand-sized K-feldspar grains was analyzed using 92 

LA-MC-ICPMS at the Geological Institute, Copenhagen, following Tyrrell et al. (2006). 93 

Prior to analysis, grains were imaged using backscattered electron microscopy (BSE) and 94 

cold cathodoluminescence (CL) to avoid intra-grain heterogeneities, which might 95 

compromise the Pb signal. Polished K-feldspar surfaces were ablated along pre-96 

determined 300μm - 700μm tracks, guided by the BSE and CL imaging. Typical 2σ 97 

errors on 206Pb/204Pb were <0.1%. 98 

To constrain the composition of potential sourcelands, a database of basement Pb 99 

isotopic analyses of K-feldspar and galena from the circum-North Atlantic was compiled, 100 

drawing on literature data and new K-feldspar Pb analyses from Ireland, Britain and 101 

Rockall Bank. These data were combined with basement terrane maps (Roberts et al., 102 

1999, Karlstrom et al., 2001) and general structural trends (Naylor and Shannon, 2005) to 103 

produce a Pb domain map (Fig. 1), described below. In addition, presumed locally-104 

derived (Haughton et al., 2005) Cretaceous sands and sandstones on the margins of the 105 

Porcupine Bank (Fig. 1) were analyzed to provide a proxy for the basement beneath the 106 

bank which currently is uncored. 107 

RESULTS 108 

Pb isotopic results are provided in the GSA data repository1. Analyses were 109 

obtained from 45 K-feldspar grains from seven Lower Triassic sandstone samples in the 110 

Slyne Basin, 32 K-feldspar grains from 11 Upper Jurassic sandstone samples in the 111 

northern Porcupine Basin and 10 K-feldspar grains from Cretaceous sand and sandstone 112 

samples from Porcupine Bank (Fig. 1). 113 
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Pb analyses of K-feldspar grains from Triassic sandstones form two distinct 114 

groups which are independent of stratigraphic position, grain size and K-feldspar 115 

petrography (see supplementary plots in GSA data repository1). Both populations are 116 

present in single thin-sections. Triassic Group 1 (n = 10) grains show a broad spread of 117 

relatively unradiogenic Pb isotopic compositions (206Pb/204Pb from 13.75 to 15.20). 118 

Triassic Group 2 (n = 31) shows a more restricted range of 206Pb/204Pb values (15.41–119 

16.70; Fig. 2a). Three grains have outlying Pb compositions. 120 

K-feldspar grains from Jurassic sandstones form two main populations with one 121 

outlier (Fig. 2b). Jurassic Group 1 (n = 20) comprises a relatively unradiogenic 122 

population (206Pb/204Pb from 15.80 to 16.74) whereas Group 2 (n = 12) is more 123 

radiogenic (206Pb/204Pb from 16.93 to 17.83). As with the Triassic populations, both these 124 

populations occur within individual thin sections and are independent of facies, 125 

stratigraphic position and K-feldspar petrography (see supplementary data plots). 126 

Significantly, K-feldspars in sandstones in the alluvial/fluvial successions have identical 127 

compositions to those in broadly age-equivalent turbidite sandstones farther south. 128 

CIRCUM-ATLANTIC BASEMENT Pb DOMAINS 129 

Five principle Pb basement domains are identified in the circum Atlantic region 130 

(Fig. 1, Fig. 2). These zones strike NE-SW and correspond to the basement terranes 131 

involved in the assembly of Laurentia and Rodinia (Karlstrom et al., 2001), the 132 

Caledonian collision of Laurentia with Avalonia, and the Variscan Orogen. Although 133 

there are variations within each of these zones, there is a broad shift toward more 134 

radiogenic Pb values toward the SE reflecting the history of crustal growth. The five 135 

zones are 1) Archean characterised by the least radiogenic Pb; 2) Proterozoic I, 136 
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corresponding mainly to basement formed during the late Paleoproterozoic; 3) 137 

Proterozoic II, a zone comprising mainly Paleoproterozoic to Mesoproterozoic basement, 138 

Neoproterozoic metasedimentary rocks and Caledonian granites; 4) a zone comprising 139 

Avalonian basement; and 5) the Variscan with Pb remobilised from Avalonian basement 140 

during end-Palaeozoic closure of the Rheic Ocean. 141 

The new Pb data from the Irish Mainland and from the Paleoproterozoic Rhinns 142 

Complex of Inishtrahull (Fig. 1, GSA data repository1) help constrain the boundary 143 

between Proterozoic I and II basement. New data from the crystalline rocks of the 144 

Rockall Bank indicate it shares an affinity with Proterozoic I basement. Pb analysis of 145 

detrital K-feldspar from condensed and coarse grained Cretaceous sediments and 146 

sedimentary rocks draping highs on the Porcupine Bank help constrain the position of 147 

boundaries west of Ireland (Fig. 1); locally-derived grains (Haughton et al. 2005) from 148 

16/28-sb01 have a Proterozoic I affinity, whereas those from 83/20-sb01 in the south 149 

dominantly show Proterozoic II and Avalonian affinities (Figure 2a and b, GSA data 150 

repository1). 151 

SAND PROVENANCE AND IMPLICATIONS FOR PALEODRAINAGE 152 

The two isotopically distinct K-feldspar groups in Triassic sandstones from the 153 

Slyne Basin correspond to a combined Archean (Triassic Group 1; Fig. 2a) and 154 

Proterozoic I source (Triassic Groups 2; Fig. 2a). There is no significant K-feldspar 155 

component originating from the Irish Mainland (Proterozoic II) or from a more southerly 156 

(Avalonian or Variscan) source. This would appear to exclude derivation of sand from 157 

the south and east, as previously suggested (Dancer et al., 2005). Derivation of sand from 158 

the north and west is consistent with the K-feldspar Pb populations, with Archean grains 159 
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derived from Labrador or Greenland and Proterozoic I grains derived from south 160 

Greenland, south Labrador, and/or from Rockall Bank (Fig. 3a). These data imply grain 161 

transport in excess of 500 km. The NW-SE orientation of the palaeodrainage corresponds 162 

well with the orientation of the proto-Labrador Sea on Triassic paleogeographic 163 

reconstructions (Eide, 2002; Fig. 3a). The sand delivery system is on similar scale to that 164 

envisaged to have operated elsewhere during the Triassic, such as the ‘Budleighensis’ 165 

river system which drained northwards from the uplifted Variscides to feed basins in the 166 

East Irish Sea and farther north (Audley-Charles, 1970, Warrington and Ivimey-Cooke, 167 

1992). The subdued physiography of Pangea during the onset of “wide” extensional 168 

rifting was probably important in allowing the operation of large-scale drainage systems. 169 

The two groups of isotopically distinct K-feldspar from Upper Jurassic sandstones 170 

in the northern Porcupine Basin correspond to a combined Proterozoic I (Jurassic Group 171 

1) and Proterozoic II source (Jurassic Group 2). There are no significant Archean, 172 

Avalonian or Variscan contributions, ruling out a far-northerly source or any input from 173 

the south. Significantly, there are no indications that K-feldspar grains have been 174 

recycled from inverted Triassic sandstones. These data are consistent with existing 175 

palaeogeographic models (Butterworth et al., 1999) that envisage drainage from north to 176 

south with grain transport distances <150 km. The proto-Rockall Basin may have acted as 177 

a sediment trap at this time, preventing the delivery of Archean grains across the rift, with 178 

sand dispersed from footwall uplifts southwards into the Porcupine, and possibly 179 

northwestwards into Rockall Basin (Fig. 3b). The narrow rifting style and significant 180 

topography may have limited the scale of drainage, with local highs supplying sediment 181 

and controlling drainage to a greater extent than during the Triassic. 182 
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CONCLUSIONS 183 

Pb isotopic data for detrital K-feldspar in Mesozoic sandstones west of Ireland 184 

demonstrate the utility and insight offered by the Pb provenance tool. Targeted laser 185 

ablation sampling avoids heterogeneities within grains and is rapid, allowing adequate 186 

numbers of medium to coarse sand grains to be analyzed. Prospective source areas are 187 

relatively easily characterised. The data (1) reveal unsuspected sub-populations in one of 188 

the main framework grain components in both groups of sandstones, (2) highlight a major 189 

change in sand provenance tied to different rift phases, (3) rule out certain source areas, 190 

(4) constrain the direction of sand transport, (5) limit the dispersal distance, (6) provide 191 

evidence for links between continental and offshore depositional systems and (7) suggest 192 

a lack of recycling of Triassic sandstones into the Jurassic. The sandstones analyzed in 193 

this studied are all from offshore cores, and such data are important to predicting the 194 

scale, distribution and orientation of reservoir sandstones. Ultimately, higher resolution 195 

Pb domain mapping and sediment typing on the conjugate Atlantic margins will help 196 

place the rifted basins, intervening blocks and sediment source areas back in their pre-rift 197 

positions. 198 
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FIGURE CAPTIONS 335 

Figure 1. Map of the North Atlantic region (after Roberts et al., 1999, Karlstrom et al., 336 

2001 and Lundin and Doré, 2005), showing the Pb domains constrained by published and 337 

new Pb isotopic analyses of K-feldspar grains from crystalline basement (data from 338 

Zartman and Wasserburg, 1969; Blaxland et al., 1979; Vitrac et al., 1981; Ashwal et al., 339 

1986; Ayuso and Bevier, 1991; Kalsbeek et al., 1993; DeWolf and Mezger, 1994; Dickin, 340 
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1998; Yamashita et al., 1999; Ayer and Dostal, 2000; Loewy et al., 2003; Connelly and 341 

Thrane, 2005; Tyrrell, 2005; Tyrrell et al., 2006. Also shown are the main Mesozoic 342 

basins offshore western Ireland and the numbered locations of sampled wells; 1: Triassic 343 

sandstones from wells 18/25–1 and 18/20–2z in the Slyne Basin; 2: Upper Jurassic 344 

sandstones from wells 26/28–1 and 35/8–2 in the Porcupine Basin; 3: Cretaceous 345 

sandstones from shallow borehole 83/20-sb01; 4: Cretaceous sandstones from shallow 346 

borehole 16/28-sb01. FC = Flemish Cap, FSB = Faeroe-Shetland Basin, GB = Galicia 347 

Bank, HB = Hatton Bank, IT = Inishtrahull, JB = Jeanne D’Arc Basin, OB = Orphan 348 

Basin, OCCB = Oceanic/Continental Crust Boundary, P = Porcupine Bank, PBs = 349 

Porcupine Basin, RB = Rockall Bank, RT = Rockall Trough, SB = Slyne Basin. 350 

 351 

Figure 2. Plot of 206Pb/204Pb versus 207Pb/204Pb of individual detrital K-feldspar grains 352 

from a) Triassic sandstones from the Slyne Basin and b) Jurassic sandstones from the 353 

north Porcupine Basin. Also shown are Pb analyses of K-feldspar grains from Cretaceous 354 

sands and sandstones from the margins of the Rockall Bank. Pb isotopic ranges for the 355 

five basement domains described in the text and illustrated on Figure 1 (for color legend 356 

and Pb data sources, see Fig. 1). 357 

 358 

Figure 3. Schematic paleogeographic reconstructions of the North Atlantic region during 359 

a) the Lower Triassic (after Audley-Charles, 1970; Zeigler, 1990; Warrington and 360 

Ivimey-Cook, 1992; Torsvik et al., 2001; Scotese, 2002; Eide, 2002; Dancer et al., 2005) 361 

and b) the Upper Jurassic (after Ziegler, 1990; Scotese, 2002; Williams et al., 1999; 362 

Butterworth et al., 1999 and Eide, 2002) showing potential drainage paths as indicated by 363 
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the Pb isotopic composition of detrital K-feldspar grains. NPB = Northern Porcupine 364 

Basin, WHP = West Hebridean Platform, for additional abbreviations, see figure caption 365 

1. 366 

 367 

1GSA Data Repository item 2007xxx, comprising lead isotopic data from 368 

detrital/basement K-feldspar and supplementary data plots, is available online at 369 

www.geosociety.org/pubs/ft2007.htm, or on request from editing@geosociety.org or 370 

Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 371 
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