403 research outputs found

    Eco-evolutionary dynamics of social dilemmas

    Full text link
    Social dilemmas are an integral part of social interactions. Cooperative actions, ranging from secreting extra-cellular products in microbial populations to donating blood in humans, are costly to the actor and hence create an incentive to shirk and avoid the costs. Nevertheless, cooperation is ubiquitous in nature. Both costs and benefits often depend non-linearly on the number and types of individuals involved -- as captured by idioms such as `too many cooks spoil the broth' where additional contributions are discounted, or `two heads are better than one' where cooperators synergistically enhance the group benefit. Interaction group sizes may depend on the size of the population and hence on ecological processes. This results in feedback mechanisms between ecological and evolutionary processes, which jointly affect and determine the evolutionary trajectory. Only recently combined eco-evolutionary processes became experimentally tractable in microbial social dilemmas. Here we analyse the evolutionary dynamics of non-linear social dilemmas in settings where the population fluctuates in size and the environment changes over time. In particular, cooperation is often supported and maintained at high densities through ecological fluctuations. Moreover, we find that the combination of the two processes routinely reveals highly complex dynamics, which suggests common occurrence in nature.Comment: 26 pages, 11 figure

    Evolutionary games in the multiverse

    Full text link
    Evolutionary game dynamics of two players with two strategies has been studied in great detail. These games have been used to model many biologically relevant scenarios, ranging from social dilemmas in mammals to microbial diversity. Some of these games may in fact take place between a number of individuals and not just between two. Here, we address one-shot games with multiple players. As long as we have only two strategies, many results from two player games can be generalized to multiple players. For games with multiple players and more than two strategies, we show that statements derived for pairwise interactions do no longer hold. For two player games with any number of strategies there can be at most one isolated internal equilibrium. For any number of players d\boldsymbol{d} with any number of strategies n, there can be at most (d-1)^(n-1) isolated internal equilibria. Multiplayer games show a great dynamical complexity that cannot be captured based on pairwise interactions. Our results hold for any game and can easily be applied for specific cases, e.g. public goods games or multiplayer stag hunts

    Understandable Controller Extraction from Video Observations of Swarms

    Get PDF
    Swarm behavior emerges from the local interaction of agents and their environment often encoded as simple rules. Extracting the rules by watching a video of the overall swarm behavior could help us study and control swarm behavior in nature, or artificial swarms that have been designed by external actors. It could also serve as a new source of inspiration for swarm robotics. Yet extracting such rules is challenging as there is often no visible link between the emergent properties of the swarm and their local interactions. To this end, we develop a method to automatically extract understandable swarm controllers from video demonstrations. The method uses evolutionary algorithms driven by a fitness function that compares eight high-level swarm metrics. The method is able to extract many controllers (behavior trees) in a simple collective movement task. We then provide a qualitative analysis of behaviors that resulted in different trees, but similar behaviors. This provides the first steps toward automatic extraction of swarm controllers based on observations

    Oscillations in Optional Public Good Games

    Get PDF
    We present a new mechanism promoting cooperative behavior among selfish individuals in the public goods game. This game represents a straightforward generalization of the prisoner's dilemma to an arbitrary number of players. In contrast to the compulsory public goods game, optional participation provides a natural way to avoid deadlocks in the state of mutual defection. The three resulting strategies - collaboration or defection in the public goods game, as well as not joining at all -are studied by means of a replicator dynamics, which can be completely analysed in spite of the fact that some payoff terms are nonlinear. If cooperation is valuable enough, the dynamics exhibits a rock-scissors-paper type of cycling between the three strategies, leading to sizeable average levels of cooperation in the population. Thus, voluntary participation makes cooperation possible. But for each strategy, the average payoff value remains equal to the earnings of those not participating in the public goods game

    Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations

    Get PDF
    The casting and repair of single-crystal gas turbine blades require specific solidification conditions that prevent the formation of new grains, equiaxed or columnar, ahead of the epitaxial columnar dendrites. These conditions are best determined by microstructure modeling. Present day analytical models of the columnar-to-equiaxed transition (CET) relate the microstructure to local solidification conditions (temperature gradient and interface velocity) without taking into account the effects of (1) a preferred growth direction of the columnar dendrites and (2) a growth competition between columnar grains of different orientations. In this article, the infiuence of these effects on the grain structure of nickel-base superalloy single crystals, which have been resolidified after laser treatment or directionally cast, is determined by experiment and by analytical and numerical modeling. It is shown that two effects arise for the case of a nonzero angle between the local heat flux direction and the preferred dendrite growth axis: (1) the regime of equiaxed growth is extended and (2) a loss of the crystal orientation of the substrate often occurs by growth competition of columnar grains leading to an "oriented-to-misoriented transition” (OMT). The results are essential for the definition of the single-crystal processing window and are important for the service life extension of expensive components in land-based or aircraft gas turbine

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    Degree of Musical Expertise Modulates Higher Order Brain Functioning

    Get PDF
    Using functional magnetic resonance imaging, we show for the first time that levels of musical expertise stepwise modulate higher order brain functioning. This suggests that degree of training intensity drives such cerebral plasticity. Participants (non-musicians, amateurs, and expert musicians) listened to a comprehensive set of specifically composed string quartets with hierarchically manipulated endings. In particular, we implemented 2 irregularities at musical closure that differed in salience but were both within the tonality of the piece (in-key). Behavioral sensitivity scores (dâ€Č) of both transgressions perfectly separated participants according to their level of musical expertise. By contrasting brain responses to harmonic transgressions against regular endings, functional brain imaging data showed compelling evidence for stepwise modulation of brain responses by both violation strength and expertise level in a fronto-temporal network hosting universal functions of working memory and attention. Additional independent testing evidenced an advantage in visual working memory for the professionals, which could be predicted by musical training intensity. The here introduced findings of brain plasticity demonstrate the progressive impact of musical training on cognitive brain functions that may manifest well beyond the field of music processin

    Onboard Evolution of Understandable Swarm Behaviors

    Get PDF
    Designing the individual robot rules that give rise to desired emergent swarm behaviors is difficult. The common method of running evolutionary algorithms off‐line to automatically discover controllers in simulation suffers from two disadvantages: the generation of controllers is not situated in the swarm and so cannot be performed in the wild, and the evolved controllers are often opaque and hard to understand. A swarm of robots with considerable on‐board processing power is used to move the evolutionary process into the swarm, providing a potential route to continuously generating swarm behaviors adapted to the environments and tasks at hand. By making the evolved controllers human‐understandable using behavior trees, the controllers can be queried, explained, and even improved by a human user. A swarm system capable of evolving and executing fit controllers entirely onboard physical robots in less than 15 min is demonstrated. One of the evolved controllers is then analyzed to explain its functionality. With the insights gained, a significant performance improvement in the evolved controller is engineered

    Coevolutionary Dynamics: From Finite to Infinite Populations

    Get PDF
    Traditionally, frequency dependent evolutionary dynamics is described by deterministic replicator dynamics assuming implicitly infinite population sizes. Only recently have stochastic processes been introduced to study evolutionary dynamics in finite populations. However, the relationship between deterministic and stochastic approaches remained unclear. Here we solve this problem by explicitly considering large populations. In particular, we identify different microscopic stochastic processes that lead to the standard or the adjusted replicator dynamics. Moreover, differences on the individual level can lead to qualitatively different dynamics in asymmetric conflicts and, depending on the population size, can even invert the direction of the evolutionary process.Comment: 4 pages (2 figs included). Published in Phys. Rev. Lett., December 200

    Strategy abundance in evolutionary many-player games with multiple strategies

    Full text link
    Evolutionary game theory is an abstract and simple, but very powerful way to model evolutionary dynamics. Even complex biological phenomena can sometimes be abstracted to simple two-player games. But often, the interaction between several parties determines evolutionary success. Rather than pair-wise interactions, in this case we must take into account the interactions between many players, which are inherently more complicated than the usual two-player games, but can still yield simple results. In this manuscript we derive the composition of a many-player multiple strategy system in the mutation-selection equilibrium. This results in a simple expression which can be obtained by recursions using coalescence theory. This approach can be modified to suit a variety of contexts, e.g. to find the equilibrium frequencies of a finite number of alleles in a polymorphism or that of different strategies in a social dilemma in a cultural context.Comment: 15 pages, 6 figures, Journal of Theoretical Biology (2011
    • 

    corecore