436 research outputs found

    A General control mechanism of energy flow in the excited state of polyenic biochromophores.

    Get PDF
    Quantum dynamics in photobiology is a highly controversial subject of modern research. In particular, the role of low-frequency vibrational coherence of biochromophores has been intensely discussed. Coherent control of polyenic chromophores, like carotenoids and retinoids, has been showing that the manipulation of such low frequency coherences may play a crucial role in the evolution of excited population and therefore in the efficiency of photosynthesis. However, no precise control mechanism has been derived. In order to clarify this open question, we combined quantum dynamical modelling with a sensitive experimental technique, namely Pump-Degenerate Four Wave Mixing (Pump-DFWM). In this work we investigate in detail the internal conversion channel of β-carotene, an important polyenic chromophore, under multipulse excitation and focus on the role of the non-adiabatic coupling between excited-state potentials and the internal energy loss. Our control mechanism is based on the interference between wavepackets in the excited state, which leads to a transient evolution of the vibrational population dependent on the relative phase between excitation sub-pulses. Such a transient evolution can affect the branching ratio between competing channels in the excited state. Therefore, our results are able to rationalize pulse shapes found in a whole class of coherent control experiments involving polyenic biochromophores, like in light harvesting complexes and in bacteriorhodopsin

    Molecular characterization of Geitleria appalachiana sp. nov. (Nostocales, Cyanobacteria) and formation of Geitleriaceae fam. nov.

    Get PDF
    Geitleria was described from a limestone cave in Israel, and subsequently reported from caves of France, Romania, Spain, Florida, Costa Rica, and Cook Islands. It is morphologically unusual in that it has true branching, but no heterocytes. A morphologically distinct species of Geitleria was recently collected from a limestone cave in Great Smoky Mountains National Park, Tennessee, and is herein described as G. appalachiana sp. nov. Sequence data for 16S rRNA and rpoC1 loci for the species were obtained from field material using single filament PCR. Phylogenetic evidence indicates that Geitleria does not belong to any family in the Nostocales containing true–branching genera, i.e. Hapalosiphonaceae, Chlorogloeopsidaceae, and Symphyonemataceae, and consequently Geitleriaceae fam. nov. is established to contain this unique genus

    ORCA-SPY enables killer whale sound source simulation, detection, classification and localization using an integrated deep learning-based segmentation

    Get PDF
    Acoustic identification of vocalizing individuals opens up new and deeper insights into animal communications, such as individual-/group-specific dialects, turn-taking events, and dialogs. However, establishing an association between an individual animal and its emitted signal is usually non-trivial, especially for animals underwater. Consequently, a collection of marine species-, array-, and position-specific ground truth localization data is extremely challenging, which strongly limits possibilities to evaluate localization methods beforehand or at all. This study presents ORCA-SPY, a fully-automated sound source simulation, classification and localization framework for passive killer whale (Orcinus orca) acoustic monitoring that is embedded into PAMGuard, a widely used bioacoustic software toolkit. ORCA-SPY enables array- and position-specific multichannel audio stream generation to simulate real-world ground truth killer whale localization data and provides a hybrid sound source identification approach integrating ANIMAL-SPOT, a state-of-the-art deep learning-based orca detection network, followed by downstream Time-Difference-Of-Arrival localization. ORCA-SPY was evaluated on simulated multichannel underwater audio streams including various killer whale vocalization events within a large-scale experimental setup benefiting from previous real-world fieldwork experience. Across all 58,320 embedded vocalizing killer whale events, subject to various hydrophone array geometries, call types, distances, and noise conditions responsible for a signal-to-noise ratio varying from −14.2 dB to 3 dB, a detection rate of 94.0 % was achieved with an average localization error of 7.01∘. ORCA-SPY was field-tested on Lake Stechlin in Brandenburg Germany under laboratory conditions with a focus on localization. During the field test, 3889 localization events were observed with an average error of 29.19∘ and a median error of 17.54∘. ORCA-SPY was deployed successfully during the DeepAL fieldwork 2022 expedition (DLFW22) in Northern British Columbia, with a mean average error of 20.01∘ and a median error of 11.01∘ across 503 localization events. ORCA-SPY is an open-source and publicly available software framework, which can be adapted to various recording conditions as well as animal species

    SUBSEA 2019 Expedition to the Gorda Ridge

    Get PDF
    The SUBSEA (Systematic Underwater Biogeochemical Science and Exploration Analog) program blends ocean exploration with “ocean worlds” research, along with NASA analog and work studies research, to address science, science operations, and technology knowledge gaps related to the exploration of our solar system. The science group researches venting fluids at isolated seamounts and spreading ridges in the Pacific Ocean as analog environments to putative volcanically hosted hydrothermal systems on other “ocean worlds” (defined as places in the outer solar system that could possess subsurface oceans). The science operations research group studies E/V Nautilus architecture, distributed teams, communication, and lowlatency telerobotics. The technology research group provided Exploration Ground Data Systems (xGDS) software to the shore team to support the integration and visualization of diverse data products during the cruise

    Cadherin 2-Related Arrhythmogenic Cardiomyopathy Prevalence and Clinical Features

    Get PDF
    Background:Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disease characterized by fibrofatty replacement of the right and left ventricle, often causing ventricular dysfunction and life-threatening arrhythmias. Variants in desmosomal genes account for up to 60% of cases. Our objective was to establish the prevalence and clinical features of ACM stemming from pathogenic variants in the nondesmosomal cadherin 2 (CDH2), a novel genetic substrate of ACM.Methods:A cohort of 500 unrelated patients with a definite diagnosis of ACM and no disease-causing variants in the main ACM genes was assembled. Genetic screening of CDH2 was performed through next-generation or Sanger sequencing. Whenever possible, cascade screening was initiated in the families of CDH2-positive probands, and clinical evaluation was performed.Results:Genetic screening of CDH2 led to the identification of 7 rare variants: 5, identified in 6 probands, were classified as pathogenic or likely pathogenic. The previously established p.D407N pathogenic variant was detected in 2 additional probands. Probands and family members with pathogenic/likely pathogenic variants in CDH2 were clinically evaluated, and along with previously published cases, altogether contributed to the identification of gene-specific features (13 cases from this cohort and 11 previously published, for a total of 9 probands and 15 family members). Ventricular arrhythmic events occurred in most CDH2-positive subjects (20/24, 83%), while the occurrence of heart failure was rare (2/24, 8.3%). Among probands, sustained ventricular tachycardia and sudden cardiac death occurred in 5/9 (56%).Conclusions:In this worldwide cohort of previously genotype-negative ACM patients, the prevalence of probands with CDH2 pathogenic/likely pathogenic variants was 1.2% (6/500). Our data show that this cohort of CDH2-ACM patients has a high incidence of ventricular arrhythmias, while evolution toward heart failure is rare.</p

    Reducing falls in older adults recently discharged from hospital: A systematic review and meta-analysis

    Get PDF
    Background: Older adults are known to have increased falls rates and functional decline following hospital discharge, with substantial economic healthcare costs. This systematic review aimed to synthesise the evidence for effective falls prevention interventions in older adults recently discharged from hospital. Methods: Literature searches of six databases of quantitative studies conducted from 1990 to June 2017, reporting falls outcomes of falls prevention interventions for community-dwelling older adults discharged from hospital were included. Study quality was assessed using a standardised JBI critical appraisal tool (MAStARI) and data pooled using Rev-Man Review Manager® Results: Sixteen studies (total sample size N= 3,290, from eight countries, mean age 77) comprising 12 interventions met inclusion criteria. We found home hazard modification interventions delivered to those with a previous falls history (1 study), was effective in reducing the number of falls (RR 0.63, 95%CI 0.43, 0.93, Low GRADE evidence). Home exercise interventions (3 studies) significantly increased the proportion of fallers (OR 1.74, 95%CI 1.17, 2.60, Moderate GRADE evidence), and did not significantly reduce falls rate (RR 1.27, 95%CI 0.99, 1.62, Very Low GRADE evidence) or falls injury rate (RR1.16, 95%CI, 0.83,1.63, Low GRADE evidence). Nutritional supplementation for malnourished older adults (1 study) significantly reduced the proportion of fallers (HR 0.41, 95% CI 0.19, 0.86, Low GRADE evidence). Conclusion: The recommended falls prevention interventions for older adults recently discharged from hospital are to provide home hazard minimisation particularly if they have a recent previous falls history and consider nutritional supplementation if they are malnourished

    The FlbA-regulated predicted transcription factor Fum21 of <i>Aspergillus niger</i> is involved in fumonisin production

    Get PDF
    Aspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls. Expression analysis showed that 38 predicted transcription factor genes are differentially expressed in strain ΔflbA. Here, the most down-regulated predicted transcription factor gene, called fum21, was inactivated. Growth, conidiation, and protein secretion were not affected in strain Δfum21. Whole genome expression analysis revealed that 63 and 11 genes were down- and up-regulated in Δfum21, respectively, when compared to the wild-type strain. Notably, 24 genes predicted to be involved in secondary metabolism were down-regulated in Δfum21, including 10 out of 12 genes of the fumonisin cluster. This was accompanied by absence of fumonisin production in the deletion strain and a 25% reduction in production of pyranonigrin A. Together, these results link FlbA-mediated sporulation-inhibited secretion with mycotoxin production
    corecore