110 research outputs found

    Vehicular traffic flow at an intersection with the possibility of turning

    Full text link
    We have developed a Nagel-Schreckenberg cellular automata model for describing of vehicular traffic flow at a single intersection. A set of traffic lights operating in fixed-time scheme controls the traffic flow. Open boundary condition is applied to the streets each of which conduct a uni-directional flow. Streets are single-lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flows dependence on the signalisation parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exist a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.Comment: 8 pages, 17 eps figures, Late

    WASTE PREVENTION SCENARIOS USING A WEB-BASED TOOL FOR LOCAL AUTHORITIES

    Get PDF
    Abstract Waste prevention is the highest ranked priority in the European Waste Framework Directive. The aim of this paper is to present the design, development and main features of a web-based tool that enables local authorities to select and implement optimum waste prevention programmes for their local conditions and to prepare their Waste Prevention Plans. The aforementioned tool, namely the WASP-Tool, is implemented as a knowledge-based decision support system which extracts characteristics and features of the waste prevention strategy models and applies multi-criteria evaluation techniques in order to facilitate decision making. It has been developed in Greek and reflects Greek and Cypriot data, context and waste prevention potential, to facilitate its use by local authorities and local administration

    Photosensitive drugs: a review on their photoprotection by liposomes and cyclodextrins.

    Get PDF
    Nowadays, an exciting challenge in the drug chemistry and technology research is represented by the development of methods aimed to protect molecular integrity and therapeutic activity of drugs from effects of light. The photostability characterization is ruled by ICH (The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use), which releases details throughout basic protocols of stability tests to be performed on new medicinal products for human use. The definition of suitable photoprotective systems is fundamental for pharmaceutical manufacturing and for human healthy as well, since light exposure may affect either drugs or drug formulations giving rise even to allergenic or mutagenic by-products. Here, we summarize and discuss the recent studies on the formulation of photosensitive drugs into supramolecular systems, capable of entrapping the molecules in a hollow of their structure by weak noncovalent interactions and protecting them from light. The best known supramolecular matrices belong to the 'auto-assembled' structures, of which liposomes are the most representative, and the 'host-guest' systems, of which cyclodextrins represent the most common 'host' counterpart. A relevant number of papers concerning the use of both liposomes and cyclodextrins as photoprotection systems for drugs has been published over the last 20 years, demonstrating that this topic captures interest in an increasing number of researchers

    Realising the European network of biodosimetry: RENEB-status quo

    Get PDF
    Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB). The RENEB project started in January 2012 involving cooperation of 23 organisations from 16 European countries. The purpose of RENEB is to increase the biodosimetry capacities in case of large-scale radiological emergency scenarios. The progress of the project since its inception is presented, comprising the consolidation process of the network with its operational platform, intercomparison exercises, training activities, proceedings in quality assurance and horizon scanning for new methods and partners. Additionally, the benefit of the network for the radiation research community as a whole is addressed

    Systematic review and meta-analysis of the value of initial biomarkers in predicting adverse outcome in febrile neutropenic episodes in children and young people with cancer

    Get PDF
    Background: Febrile neutropenia is a frequently occurring and occasionally life-threatening complication of treatment for childhood cancer. Many biomarkers have been proposed as predictors of adverse events. We aimed to undertake a systematic review and meta-analysis to summarize evidence on the discriminatory ability of initial serum biomarkers of febrile neutropenic episodes in children and young people. Methods: This review was conducted in accordance with the Center for Reviews and Dissemination Methods, using three random effects models to undertake meta-analysis. It was registered with the HTA Registry of systematic reviews, CRD32009100485. Results: We found that 25 studies exploring 14 different biomarkers were assessed in 3,585 episodes of febrile neutropenia. C-reactive protein (CRP), pro-calcitonin (PCT), and interleukin-6 (IL6) were subject to quantitative meta-analysis, and revealed huge inconsistencies and heterogeneity in the studies included in this review. Only CRP has been evaluated in assessing its value over the predictive value of simple clinical decision rules. Conclusions: The limited data available describing the predictive value of biomarkers in the setting of pediatric febrile neutropenia mean firm conclusions cannot yet be reached, although the use of IL6, IL8 and procalcitonin warrant further study

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells

    Suppression of BCL6 Function by HDAC Inhibitor Mediated Acetylation and Chromatin Modification Enhances BET Inhibitor Effects in B-cell Lymphoma Cells

    Get PDF
    Multiple genetic aberrations in the regulation of BCL6, including in acetyltransferase genes, occur in clinically aggressive B-cell lymphomas and lead to higher expression levels and activity of this transcriptional repressor. BCL6 is, therefore, an attractive target for therapy in aggressive lymphomas. In this study romidepsin, a potent histone deacetylase inhibitor (HDACi), induced apoptosis and cell cycle arrest in Burkitt and diffuse large B-cell lymphoma cell lines, which are model cells for studying the mechanism of action of BCL6. Romidepsin caused BCL6 acetylation at early timepoints inhibiting its function, while at later timepoints BCL6 expression was reduced and target gene expression increased due to chromatin modification. MYC contributes to poor prognosis in aggressive lymphoma. MYC function is reduced by inhibition of chromatin readers of the bromodomain and extra-terminal repeat (BET) family, which includes BRD4. The novel combination of romidepsin and JQ1, a BRD4 inhibitor was investigated and showed synergy. Collectively we suggest that the combination of HDACi and BRD4i should be pursued in further pre-clinical testing.Funding: The work was supported by grants SAF2014-53526-R and SAF2017-88026-R from MINECO, Spanish Government, to M.D.D. and J.L. (partially funded by FEDER program from European Union). M.G.C. was recipient of a “Marcos Fernández” fellowship from Leukemia and Lymphoma foundation. L.G.G. was recipient of a FPI fellowship from Spanish Government

    CXCR5<sup>+</sup> follicular cytotoxic T cells control viral infection in B cell follicles

    Get PDF
    During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell–derived malignancies

    Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies

    Get PDF
    corecore