37 research outputs found

    A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

    Get PDF
    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations

    In planta expression of nanobody-based designer chicken antibodies targeting Campylobacter

    Get PDF
    Campylobacteriosis is a widespread infectious disease, leading to a major health and economic burden. Chickens are considered as the most common infection source for humans. Campylobacter mainly multiplies in the mucus layer of their caeca. No effective control measures are currently available, but passive immunisation of chickens with pathogen-specific maternal IgY antibodies, present in egg yolk of immunised chickens, reduces Campylobacter colonisation. To explore this strategy further, anti-Campylobacter nanobodies, directed against the flagella and major outer membrane proteins, were fused to the constant domains of chicken IgA and IgY, combining the benefits of nanobodies and the effector functions of the Fc-domains. The designer chimeric antibodies were effectively produced in leaves of Nicotiana benthamiana and seeds of Arabidopsis thaliana. Stable expression of the chimeric antibodies in seeds resulted in production levels between 1% and 8% of the total soluble protein. These in planta produced antibodies do not only bind to their purified antigens but also to Campylobacter bacterial cells. In addition, the anti-flagellin chimeric antibodies are reducing the motility of Campylobacter bacteria. These antibody-containing Arabidopsis seeds can be tested for oral passive immunisation of chickens and, if effective, the chimeric antibodies can be produced in crop seeds

    Identification and characterization of nanobodies targeting the EphA4 receptor

    Get PDF
    The ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders. Therefore, the aim of our study was to generate potent and selective Nanobodies against the ligand-binding domain of the human EphA4 receptor. Weidentified two Nanobodies, Nb 39 and Nb 53, that bind EphA4 with affinities in the nanomolar range. These Nanobodies were most selective for EphA4, with residual binding to EphA7 only. Using Alphascreen technology, we found that both Nanobodies displaced all known EphA4-binding ephrins from the receptor. Furthermore, Nb39 andNb53 inhibited ephrin-induced phosphorylationoftheEphA4proteininacell-basedassay. Finally, in a cortical neuron primary culture, both Nanobodies were able to inhibit endogenous EphA4-mediated growth-cone collapse induced by ephrin-B3. Our results demonstrate the potential of Nanobodies to target the ligand-binding domain of EphA4. These Nanobodiesmaydeservefurtherevaluationaspotentialtherapeutics in disorders in which EphA4-mediated signaling plays a role

    Удосконалення комерційної діяльності як фактор підвищення конкурентоспроможності підприємства

    Get PDF
    Additional file 5. ELISA to assess the interaction between Campylobacter -specific nanobodies and purified MOMP. The saturation binding curve of the interaction between coated MOMP (1 µg/mL) and a His-tagged nanobody (1 × 10−6 to 1 × 102 µg/mL) was obtained via ELISA. The dose-dependent inhibitory effect of a strep-tagged nanobody (1 × 10−6 to 1 × 102 µg/mL) on the interaction between His-tagged Nb84 (5.10−2 µg/mL) and MOMP (1 µg/mL), is demonstrated in the competition binding curve. Inhibition by strep-tagged (A) Nb5, (B) Nb22, (C) Nb23, (D) Nb24, (E) Nb49, (F) 84, (G) Nb15, (H) Nb32, (I) Nb34, (J) Nb45, (K) Nb48 and (L) Nb63, was assessed. The ELISA was developed with mouse anti-Histidine tag monoclonal antibody and goat anti-mouse IgG conjugated to alkaline phosphatase. The error bars represent the standard deviations

    A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

    Get PDF
    The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations

    Alternatively activated macrophages during parasite infections

    No full text
    Depending on the cytokine environment, macrophages can differentiate into distinct subsets that perform specific immunological roles. In this regard, the functions of macrophages activated by interferon γ, referred to as classically activated macrophages, have been extensively documented, particularly during immune responses to infection. Recently, it was recognized that macrophages exposed to cytokines generated by T helper cell type 2 (Th2) cells exert an alternative activation program. However, the nature and functions of alternatively activated macrophages are ill defined. Evidence for the presence of alternatively activated macrophages and their possible influence in the outcome of several parasite diseases are discussed here.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Generation and in vitro characterisation of inhibitory nanobodies towards plasminogen activator inhibitor 1

    No full text
    Plasminogen activator inhibitor 1 (PAI-1) is the principal physiological inhibitor of tissue-type plasminogen activator (t-PA) and has been identified as a risk factor in cardiovascular diseases. In order to generate nanobodies against PAI-1 to interfere with its functional properties, we constructed three nanobody libraries upon immunisation of three alpacas with three different PAI-1 variants. Three panels of nanobodies were selected against these PAI-1 variants. Evaluation of the amino acid sequence identity of the complementarity determining region-3 (CDR3) reveals 34 clusters in total. Five nanobodies (VHH-s-a98, VHH-2w-64, VHH-s-a27, VHH-s-a93 and VHH-2g-42) representing five clusters exhibit inhibition towards PAI-1 activity. VHH-s-a98 and VHH-2w-64 inhibit both glycosylated and non-glycosylated PAI-1 variants through a substrate-inducing mechanism, and bind to two different regions close to αhC and the hinge region of αhF; the profibrinolytic effect of both nanobodies was confirmed using an in vitro clot lysis assay. VHH-s-a93 may inhibit PAI-1 activity by preventing the formation of the initial PAI-1t-PA complex formation and binds to the hinge region of the reactive centre loop. Epitopes of VHH-s-a27 and VHH-2g-42 could not be deduced yet. These five nanobodies interfere with PAI-1 activity through different mechanisms and merit further evaluation for the development of future profibrinolytic therapeutics.status: publishe

    CarP, involved in pyrimidine regulation of the escherichia coli carbamoylphosphate synthetase operon encodes a sequence-specific DNA-binding protein identical to XerB and PepA, also Required for Resolution of ColEI Multimers

    No full text
    The carP gene involved in pyrimidine-specific regulation of the upstream PI promoter of the Escherichia coli carAB operon has been cloned in vivo on a mini-Mu replicon, sequenced and shown to be identical to the xerB (pepA) gene encoding aminopeptidase A, a protein also involved in the Xermediated site-specific recombination at ColEI cer. The frans-dominant allele carP6 was cloned as well and shown to bear a single G → A transition that converts the TGG codon (Trp473) into a TAG amber stop codon. The truncated mutant protein, missing the 31 C-terminal amino acid residues, was shown to be partially active; in the multicopy state the carP6 allele can restore pyrimidine repressibility of the carAB promoter PI. The trans-dominant character of the single copy carP6 allele was found to be suppressed in the presence of multiple copies of the wild-type gene. The carP (pepA) control region was sequenced and transcription shown to be initiated at three promoters, the most upstream one of which was shown to be subject to negative autoregulation. The aminopeptidase activity of CarP (PepA) was found to be dispensable for its role in pyrimidine-mediated repression of carAB transcription. CarP (PepA) was shown to be a sequence-specific DNA-binding protein that does not require, at least not in vitro, any pyrimidine cofactor to bind to the DNA. Mobility-shift and DNase I footprinting experiments have revealed a specific binding of purified CarP (PepA) to two sites in each one of the control regions of the E. coli and Salmonella typhimurium car AB operons and to a single site in the carP (pepA) control region. We propose that integration host factor and CarP/PepA-induced structural modifications in the carAB control region cause conformational changes required to assemble a pyrimidine-specific nucleo-protein regulatory complex.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies

    No full text
    Human toxocariasis is a zoonosis resulting from the migration of larval stages of the dog parasite Toxocara canis into the human paratenic host. Despite its well-known limitations, serology remains the most important tool to diagnose the disease. Our objective was to employ camelid single domain antibody fragments also known as nanobodies (Nbs) for a specific and sensitive detection of Toxocara canis excretory/secretory (TES) antigens. From an alpaca immune Nb library, we retrieved different Nbs with specificity for TES antigens. Based on ELISA experiments, these Nbs did not show any cross-reactivity with Ascaris lumbricoides, Ascaris suum, Pseudoterranova decipiens, Anisakis simplex and Angiostrongylus cantonensis larval antigens. Western blot and immunocapturing revealed that Nbs 1TCE39, 1TCE52 and 2TCE49 recognise shared epitopes on different components of TES antigen. The presence of disulphide bonds in the target antigen seems to be essential for recognition of the epitopes by these three Nbs. Three separate sandwich ELISA formats, using monovalent and bivalent Nbs, were assessed to maximise the detection of TES antigens in solution. The combination of biotinylated, bivalent Nb 2TCE49 on a streptavidin pre-coated plate to capture TES antigens, and Nb 1TCE39 chemically coupled to horseradish peroxidase for detection of the captured TES antigens, yielded the most sensitive ELISA with a limit of detection of 0.650 ng/ml of TES antigen, spiked in serum. Moreover, the assay was able to detect TES antigens in sera from mice, taken 3 days after the animals were experimentally infected with T. canis. The specific characteristics of Nbs make this ELISA not only a promising tool for the detection of TES antigens in clinical samples, but also for a detailed structural and functional study of TES antigens

    The metastatic T-cell hybridoma antigen/P-selectin glycoprotein ligand 1 is required for hematogenous metastasis of lymphomas

    No full text
    Using variants of the murine BW5147 lymphoma cell-line, we have previously identified 3 monoclonal antibodies (MAbs) that discriminate between metastatic and nonmetastatic BW5147-derived T-cell hybridomas and lymphomas, as well as BW5147-unrelated T-lymphomas. These MAbs were reported to recognize an identical membrane-associated sialoglycoprotein, termed "metastatic T-cell hybridoma antigen" (MTH-Ag). Here, we document that the expression pattern of the MTH-Ag on metastatic and nonmetastatic BW5147 variants correlates with that of the P-selectin glycoprotein ligand 1 (PSGL-1), a sialomucin involved in leukocyte recruitment to sites of inflammation. Moreover, the MAbs against the MTH-Ag recognize PSGL-1 when it is transfected in MTH-Ag-negative BW5147 variants, suggesting that the MTH-Ag is PSGL-1. Overexpression of MTH-Ag/PSGL-1 in MTH-Ag-negative BW5147 variants did not affect their in vivo malignancy. Yet, down-regulation of MTH-Ag/PSGL-1 expression on metastatic, MTH-Ag-positive BW5147 variants, using an RNA interference (RNAi) approach, resulted, in a dose-dependent manner, in a significant reduction of liver and spleen colonization and a delay in mortality of the recipient mice upon intravenous inoculation. Collectively, these results demonstrate that, although MTH-Ag/PSGL-1 overexpression alone may not be sufficient for successful dissemination and organ colonization, MTH-Ag/PSGL-1 plays a critical role in hematogenous metastasis of lymphoid cancer cells
    corecore