27 research outputs found

    Extended life span of human endometrial stromal cells transfected with cloned origin-defective, temperature-sensitive simian virus 40.

    Get PDF
    Human endometrial stromal cells transfected with an origin-defective, temperature-sensitive simian virus 40 recombinant plasmid are dependent on T-antigen function for proliferation and at the permissive temperature have an extended life span in culture. Southern blot analysis indicates that the transfected gene is present in low copy number, possibly at a single integration site. Normal stromal cells are capable of 10 to 20 population doublings in culture. Transfected cultures have been carried at the permissive temperature to 80 population doublings before crisis. In the multistep model of malignant transformation of human cells, these cells represent one of the earliest stages: extended but finite life span. We have used these cells to investigate alterations in signal transduction that may be responsible for this early stage of transformation caused by the large T antigen. Temperature shift experiments indicate that the expression of ornithine decarboxylase (ODC) but not of c-fos is altered by the large T antigen. Induction of c-fos by serum or 12-O-tetradecanoylphorbol-13-acetate is independent of temperature. However, in the transfected cells, the induction of ODC by asparagine or serum is greatly enhanced at the permissive temperature. This result indicates that the large T antigen acts downstream of c-fos but upstream of ODC expression in the signal-transducing cascade

    Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene

    Get PDF
    Branch points and flexures in the high pressure arterial system have long been recognized as sites of unusually high turbulence and consequent stress in humans are foci for atherosclerotic lesions. We show that mice that are homozygous for a null mutation in the gene encoding an endogenous antiinflammatory cytokine, interleukin 1 receptor antagonist (IL-1ra), develop lethal arterial inflammation involving branch points and flexures of the aorta and its primary and secondary branches. We observe massive transmural infiltration of neutrophils, macrophages, and CD4(+) T cells. Animals appear to die from vessel wall collapse, stenosis, and organ infarction or from hemorrhage from ruptured aneurysms. Heterozygotes do not die from arteritis within a year of birth but do develop small lesions, which suggests that a reduced level of IL-1ra is insufficient to fully control inflammation in arteries. Our results demonstrate a surprisingly specific role for IL-1ra in the control of spontaneous inflammation in constitutively stressed artery walls, suggesting that expression of IL-1 is likely to have a significant role in signaling artery wall damage

    Influenza Virus A Infection of Human Monocyte and Macrophage Subpopulations Reveals Increased Susceptibility Associated with Cell Differentiation

    Get PDF
    Influenza virus infection accounts for significant morbidity and mortality world-wide. Interactions of the virus with host cells, particularly those of the macrophage lineage, are thought to contribute to various pathological changes associated with poor patient outcome. Development of new strategies to treat disease therefore requires a detailed understanding of the impact of virus infection upon cellular responses. Here we report that human blood-derived monocytes could be readily infected with the H3N2 influenza virus A/Udorn/72 (Udorn), irrespective of their phenotype (CD14++/CD16−, CD14++/CD16+ or CD14dimCD16++), as determined by multi-colour flow cytometry for viral haemagglutinin (HA) expression and cell surface markers 8–16 hours post infection. Monocytes are relatively resistant to influenza-induced cell death early in infection, as approximately 20% of cells showed influenza-induced caspase-dependent apoptosis. Infection of monocytes with Udorn also induced the release of IL-6, IL-8, TNFα and IP-10, suggesting that NS1 protein of Udorn does not (effectively) inhibit this host defence response in human monocytes. Comparative analysis of human monocyte-derived macrophages (Mph) demonstrated greater susceptibility to human influenza virus than monocytes, with the majority of both pro-inflammatory Mph1 and anti-inflammatory/regulatory Mph2 cells expressing viral HA after infection with Udorn. Influenza infection of macrophages also induced cytokine and chemokine production. However, both Mph1 and Mph2 phenotypes released comparable amounts of TNFα, IL-12p40 and IP-10 after infection with H3N2, in marked contrast to differential responses to LPS-stimulation. In addition, we found that influenza virus infection augmented the capacity of poorly phagocytic Mph1 cells to phagocytose apoptotic cells by a mechanism that was independent of either IL-10 or the Mer receptor tyrosine kinase/Protein S pathway. In summary, our data reveal that influenza virus infection of human macrophages causes functional alterations that may impact on the process of resolution of inflammation, with implications for viral clearance and lung pathology

    Senior Recital

    Get PDF
    corecore