8,583 research outputs found

    The impact of climate-induced distributional changes on the validity of biological water quality metrics

    Get PDF
    We present data on the distributional changes within an order of macroinvertebrates used in biological water quality monitoring. The British Odonata (dragonflies and damselflies) have been shown to be expanding their range northwards and this could potentially affect the use of water quality metrics. The results show that the families of Odonata that are used in monitoring are shifting their ranges poleward and that species richness is increasing through time at most UK latitudes. These past distributional shifts have had negligible effects on water quality indicators. However, variation in Odonata species richness (particularly in species-poor regions) has a significant effect on water quality metrics. We conclude with a brief review of current and predicted responses of aquatic macroinvertebrates to environmental warming and maintain that caution is warranted in the use of such dynamic biological indicators

    Wings of Coenagrion puella vary in shape at the northern range margin (Odonata: Coenagrionidae)

    Get PDF
    A previous study has shown that wing size in Coenagrion puella varied considerably along a latitudinal gradient in the UK. Using landmark data from wing images, patterns of shape variation were also determined along the same transect by geometric morphometric analysis of wing shape. Wing shape was uniform at all sites other than those closest to the range margin, which differed significantly. The potential mechanisms that might have generated such between-population variation are discussed

    A theoretical investigation of roll coating phenomena

    Get PDF
    This thesis is primarily concerned with the theoretical modelling of steady, forward roll coating systems under different degrees of starvation by the use of analytical and numerical techniques. The concept of ‘starvation’ in a two roll coater is introduced and three possibilities identified: the fully-flooded, moderately-starved and ultra-starved situations. An extensive literature survey of work related to the fully-flooded case is given, together with a discussion of the difficulties associated with, and application of finite element methods to, free surface coating flows. Four models of ultra-starved roll coating are developed, the first of which neglects the flux between the rollers. The analytical solution of this first ‘Zero Flux’ model predicts streamlines and pressures that are in qualitative agreement with experiment. This model is refined further: first of all to allow a small, non-zero flux, then to enable prediction of the film thicknesses produced on the rollers during the forward case. The theoretical film thickness predictions agree well with Malone’s [1992] experimental data. The final model also allows a small flux between the rollers, but retains all other assumptions of the ‘Zero Flux’ model. Streamline predictions from this last model agree well with experiment. A FORTRAN finite element code is developed to solve free surface coating flows and is used to obtain film thickness ratio predictions in fully-flooded roll coating over a wider velocity ratio range than previously reported. These predictions agree reasonably well with Savage’s [1992] model. A numerical model of starvation in roll coating systems is developed and the predicted velocity and pressure fields are in qualitative agreement with both experimental observations and the analytical predictions for ultra-starved flow. Finally, numerical film thickness ratio predictions are obtained over the gamut of starvation: they are almost independent of the degree of starvation and are in good agreement with Malone’s [1992] experimental data

    Solute location in a nanoconfined liquid depends on charge distribution

    Get PDF
    Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar, excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials

    Systems engineering analysis of aplanatic Wolter type I x-ray telescopes

    Get PDF
    It is well known that normal-incidence aplanatic telescope designs perform better at small field angles than ones corrected only for spherical aberration. This is why most large astronomical telescopes fabricated in the past fifty years have been of the Ritchey-Chretien (aplanatic) design rather than of the classical Cassegrain design. For the relatively new field of x-ray astronomy, the Welter type I grazing incidence design has been extensively utilized. It consists of a paraboloidal primary mirror coaxial with a confocal hyperboloidal secondary mirror. Aplanatic versions of the Welter type I grazing incidence x-ray telescope have been discussed in detail in the literature, and are widely touted as being superior designs. However, scattering effects from residual optical fabrication errors and other practical engineering error sources prevent these grazing-incidence telescopes from being near diffraction-limited (even on axis) at the very short operational x-ray wavelengths. A systems engineering analysis of these error sources indicates that they will dominate coma at the small field angles, and of course astigmatism, field curvature, and higher-order aberrations dominate coma at the large field angles. Hence, there is little improvement in performance when going to an aplanatic design. Comparison of performance predictions for the classical versus aplanatic Welter type I x-ray telescope are presented for the special case of the Solar X-Ray Imager (SXI) baseline design. SXI is expected to become a standard subsystem aboard the next generation of NOAA/GOES weather satellites

    How a soybean plant develops

    Get PDF
    Compiled in this publication are years of research, study and observation o f exactly how a soybean plant develops. Photographs and accompanying text record the findings for each major stage of development in the soybean plant’s life.https://lib.dr.iastate.edu/specialreports/1050/thumbnail.jp

    Are solar cycles predictable?

    Full text link
    Various methods (or recipes) have been proposed to predict future solar activity levels - with mixed success. Among these, some precursor methods based upon quantities determined around or a few years before solar minimum have provided rather high correlations with the strength of the following cycles. Recently, data assimilation with an advection-dominated (flux-transport) dynamo model has been proposed as a predictive tool, yielding remarkably high correlation coefficients. After discussing the potential implications of these results and the criticism that has been raised, we study the possible physical origin(s) of the predictive skill provided by precursor and other methods. It is found that the combination of the overlap of solar cycles and their amplitude-dependent rise time (Waldmeier's rule) introduces correlations in the sunspot number (or area) record, which account for the predictive skill of many precursor methods. This explanation requires no direct physical relation between the precursor quantity and the dynamo mechanism (in the sense of the Babcock-Leighton scheme or otherwise).Comment: 5 pages, 2 figure

    Post-training inactivation of the anterior thalamic nuclei impairs spatial performance on the radial arm maze

    Get PDF
    The limbic thalamus, specifically the anterior thalamic nuclei (ATN), contains brain signals including that of head direction cells, which fire as a function of an animal\u27s directional orientation in an environment. Recent work has suggested that this directional orientation information stemming from the ATN contributes to the generation of hippocampal and parahippocampal spatial representations, and may contribute to the establishment of unique spatial representations in radially oriented tasks such as the radial arm maze. While previous studies have shown that ATN lesions can impair spatial working memory performance in the radial maze, little work has been done to investigate spatial reference memory in a discrimination task variant. Further, while previous studies have shown that ATN lesions can impair performance in the radial maze, these studies produced the ATN lesions prior to training. It is therefore unclear whether the ATN lesions disrupted acquisition or retention of radial maze performance. Here, we tested the role of ATN signaling in a previously learned spatial discrimination task on a radial arm maze. Rats were first trained to asymptotic levels in a task in which two maze arms were consistently baited across training. After 24 h, animals received muscimol inactivation of the ATN before a 4 trial probe test. We report impairments in post-inactivation trials, suggesting that signals from the ATN modulate the use of a previously acquired spatial discrimination in the radial-arm maze. The results are discussed in relation to the thalamo-cortical limbic circuits involved in spatial information processing, with an emphasis on the head direction signal. © 2017 Harvey, Thompson, Sanchez, Yoder and Clark
    • …
    corecore