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ABSTRACT

This thesis is primarily concerned with the theoretical modelling of steady, forward 

roll coating systems under different degrees of starvation by the use of analytical and 

numerical techniques.

The concept of ‘starvation’ in a two roll coater is introduced and three possibili

ties identified: the fully-flooded, moderately-starved and ultra-starved situations. An 

extensive literature survey o f work related to the fully-flooded case is given, together 

with a discussion o f the difficulties associated with, and application of finite element 

methods to, free surface coating flows.

Four models of ultra-starved roll coating are developed, the first o f which neglects 

the flux between the rollers. The analytical solution of this first ‘Zero Flux’ model 

predicts streamlines and pressures that are in qualitative agreement with experiment. 

This model is refined further: first of all to allow a small, non-zero flux, then to enable 

prediction of the film thicknesses produced on the rollers during the forward case. 

The theoretical film thickness predictions agree well with Malone’s [1992] experimental 

data. The final model also allows a small flux between the rollers, but retains all other 

assumptions of the ‘ Zero Flux’ model. Streamline predictions from this last model 

agree well with experiment.

A FORTRAN finite element code is developed to solve free surface coating flows 

and is used to obtain film thickness ratio predictions in fully-flooded roll coating over a 

wider velocity ratio range than previously reported. These predictions agree reasonably 

well with Savage’s [1992] model.

A numerical model of starvation in roll coating systems is developed and the pre

dicted velocity and pressure fields are in qualitative agreement with both experimental 

observations and the analytical predictions for ultra-starved flow. Finally, numerical 

film thickness ratio predictions are obtained over the gamut of starvation: they are al

most independent of the degree of starvation and are in good agreement with Malone’s 

[1992] experimental data.
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IX

NOMENCLATURE

In some cases the use of a symbol is local to a short section of the text and is not 

listed here, in which case it is defined when first introduced. In certain other cases the - 

same notation has been given interpretations which vary from one chapter to another. 

Although the meaning should be clear from the text of the chapter concerned, the 

number of the chapter to which the particular interpretation applies is given in brackets 

after the explanation of the notation.

Unless otherwise stated, quantities written in upper case are physical, i.e. dimen

sional, whereas those in lower case are dimensionless.

A* Dimensionless aspect ratio of a rectangular cavity (for flow in lid-driven

and open, driven cavities)

A0 Local triangle

C Position of the downstream fluid-air interface

Ca Capillary number

Ca* Critical value of Ca for ribbing

§i Spinal direction vectors

Ho Semi-nip width in a two-roll coater or minimum gap in a

flat plate/ roller geometry (Chapter 5)

H* Dimensionless cavity depth in the zero and small flux models

H (X ) Roller separation

h(x) Dimensionless form of i f  (A”)

h Spine heights

£  Global Jacobian matrix

¿ e Element-level Jacobian

L, Area co-ordinates

A* Quadratic shape functions

H Fluid pressure

P Dimensionless fluid pressure

P Average dimensionless pressure at the nip



X

p* 

Pa

Pa

Pn

Q

Ql> Q2

9

R\,R-2

R

R

Rcurv

r

Tcurv

Re

S

St

sn

TUT2

T0

T

tuhito

U,V,W

u,v,w

Vi,V3

V

V

X M

Xm

X ,Y ,Z

Modified dimensionless pressure

Ambient air pressure

Dimensionless ambient air pressure

Upper right hand quadrant roots of sin 2p„ =  2pn

Flow rate

Fluxes on the upper and lower rollers respectively 

Dimensionless flow rate in a slot coater 

Radii of upper and lower rollers respectively 

Average roller radius (2/R = 1/Ri + I /R 2)

Vector of finite element residuals 

Radius of curvature of a fluid-air interface 

radial co-ordinate 

Dimensionless form of Rcurv 

Reynolds number

Velocity ratio 5 = V1/V2 or X  co-ordinate of separation point (Chapter 1) 

Stokes number

Upper right hand quadrant roots of sin2s„ = - 2 sn

Average thickness of uniform layers on upper and lower rollers respectively 

Average inlet thickness in forward roll coating 

Surface Tension

Dimensionless forms of T\,T2,To respectively 

Velocities of flow in X, Y, Z directions respectively 

Dimensionless forms of U, V, W

Peripheral speeds of upper and lower rollers respectively 

Peripheral speed of each roller in symmetric forward roll coating 

Average roller speed (= (Vj +  V2)/2 )

Base line in mesh generation algorithm for roll coating 

Dimensionless horizontal co-ordinate of X M  

Global cartesian co-ordinates
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x ,y ,z  Dimensionless global co-ordinates

Y£ Location of top of lower vortex in forward meniscus roll coating

Y j  Location of bottom of upper vortex in forward meniscus roll coating

«  Contact angle in the slot coater

£* Vector of finite element coefficients

P Modified capillary number

P_ Vector of finite element coefficients for the flow field

dfi Fluid boundary

t) Newtonian viscosity or local co-ordinate (Chapter 4 and Appendix B)

or dimensionless vertical nip co-ordinate (Chapters 4 and 5)

6 Modified x co-ordinate or azimuthal angle used in corner expansions

(Appendix B)

Oc Apparent contact angle

J  Local Jacobian matrix of an isoparametric mapping

 ̂ Dimensionless flow rate in roll coating

Dimensionless fluxes on upper and lower rollers respectively 

Eigenvalues in analytical solution of the zero flux model (=  (n — l/2)7r)

£ Local co-ordinate

n  Functional used to generate streamfunction-vorticity finite element equations

P Fluid density

Sij Newtonian stress tensor

aij Dimensionless form of

4>i»4>i Even and odd Papkovich-Fadle eigenfunctions respectively

^ Streamfunction

^ Dimensionless streamfunction

V’i Linear shape functions for pressure

^ Fluid domain

w Dimensionless vorticity
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Chapter 1

General Introduction

1.1 Applications of Coating Processes

Coating processes arise in many areas of the chemical engineering industry. These 

include the coating of paper, fabrics and metal sheets as well as the production of 

adhesive tapes, surgical dressings and photographic film. Coating flows are small-scale, 

viscous, free surface flows in which a film of liquid is continuously deposited on a 

deformable or rigid moving substrate (the web). The preferred flows are steady and 

deposit a uniformly thin layer devoid of imperfections of any kind.

The problem of applying a thin liquid layer is by no means trivial since the specifi

cations of coating thickness are often very strict and, for productivity reasons, a high 

speed of application may be required. Moreover, several discrete layers may have to be 

applied simultaneously.

The geometry of the coating process varies with the application; industrial coating 

operations come in great variety: dip-, bead-, knife-, forward and reverse roll-, slide- 

and curtain-coating are illustrated in Figure 1.1. Each one shares common features 

such as free surfaces and/or wetting lines (see §1.3). Although this thesis is primarily 

concerned with an investigation of roll coating it is clear that the techniques developed, 

in particular the free surface code described in Chapter 4, will also be applicable to 

many different coating processes.

2
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1.2 The Two Roll Coater

1.2.1 Introduction

The two roll coating process, by which a thin liquid film is laid down on a moving 

web, is illustrated in Figures 1.2 (a) and (b). The lower roller (often referred to as 

an applicator roller) is immersed in a bath of liquid while the second, upper roller, 

is aligned vertically above it such that there is a narrow, uniform gap between the 

roller surfaces. When the lower roller rotates liquid is transferred onto its surface by 

viscous lifting and flows into the ‘nip’ region (the ‘nip’ is the point of minimum roller 

separation) between the web and lower roller. A fraction of this liquid is transferred 

onto the web of material in contact with the upper roller and the remainder is returned 

to the bath via the lower roller. In a typical industrial process the liquid film on the 

coated web is subsequently dried or cured.

Industrial roll coating systems can be categorized into several distinct groups. For 

example, they can be operated in either forward (as shown in Figures 1.1 (e), 1.2 (a)) 

or reverse (Figure 1.1 (f)) mode and may have either (i) rigid (non-deformable), (ii) 

deformable (rubber-coated), or (iii) gravure (knurled/engraved) rollers. The theoreti

cal predictions and experimental measurements reported in this thesis pertain to the 

forward mode of operation with rigid rollers. In this case it is observed that flow in the 

nip-region and sufficiently far from the ends of the rollers is essentially two-dimensional 

since the component of liquid velocity parallel to the roller axes, W , is small compared 

to those, i.e. (17, V ), perpendicular to these axes (see e.g. Coyle [1984], Carter [1985], 

Malone [1992]). Moreover since it is the flow in the nip region which determines how 

the liquid splits into the two films shown in Figures 1.2 (a) and (b), the analyses of 

roll coating presented in this thesis are two-dimensional models of the flow in the nip 

region.

The usual mode of operation of a forward roll coater is that in which the clearance 

space at inlet is bathed in an ample supply o f liquid; in this case the coater is said 

to be ‘fully-flooded’ . Figure 1.3 shows an experimentally-obtained view of the nip 

region of a fully-flooded forward roll coater, along the axis of the rollers, due to Malone
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[1992]: the rollers are moving from left to right and the relatively bright regions are 

indicative of the meniscus positions. This picture clearly demonstrates the existence 

of a downstream, film-splitting meniscus and a bank of liquid extending far upstream 

of the nip. Malone [1992] used a dye injection technique to elucidate the nature of the 

flow in the upstream bank -  see Figure 1.4. The presence of blue dye introduced into 

an optically clear oil revealed the existence of large eddies in the upstream bank.

A consequence of using fully-flooded roll coating is that, by a conservation of mass 

argument, the thickness of the films T\, T2 produced on the web and lower roller 

respectively are necessarily of the same order of magnitude as the minimum roller 

separation. However, practical engineering constraints limit this minimum separation 

to the order of 100 micrometres (10-4m) (see Malone [1992]). Since all previous roll 

coating analysts have assumed that the inlet is always fully-flooded, this would seem to 

label roll coating as unsuitable for the production of uniform films whose thicknesses 

are significantly less than 100 micrometres. Fortunately, a different roll coating regime 

can be used which, although used in industry for a number of years, appeaxs to have 

escaped the attention of the coating community at large. When very thin films are 

desired, for example, as in the manufacture of optical data storage equipment, it is 

possible to operate the roll coater under conditions in which the supply of liquid at 

inlet is less than that required to flood the inlet. In this case the coater is said to be 

‘starved’ (c.f. Dowson and Taylor’s [1979] work on the lubrication of bearings).

In fact it is possible to generate liquid films whose thicknesses are an order of 

magnitude less than the gap width by using the same coating geometry but with a 

much reduced inlet flux. This situation is illustrated in Figure 1.5, which shows that 

reducing the supply of liquid leads to the disappearance of the upstream bank giving 

rise instead to a second, inlet meniscus upstream of the nip and a ‘bead’ of liquid 

suspended in the nip region. In this case the coater is said to be ‘ultra-starved’.

It is convenient to classify forward roll coating according to the inlet conditions. 

Three cases can be identified: ‘fully-flooded’ , ‘moderately-starved’ (in which the supply 

of liquid is only slightly less than that required to flood the inlet) and ‘ultra-starved’ 

(when the supply has been significantly reduced), which are illustrated schematically
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in Figures 1.6 (a)-(c), respectively. Previous work related to, and the salient features 

of, each case are now discussed.

1.2.2 The Fully-Flooded Case

Fully-flooded forward roll coating has been studied extensively. From his experiments, 

Taylor [1963] suggested that the flow field divides naturally into two parts : a two- 

dimensional portion in the immediate vicinity of the downstream, film-splitting menis

cus, and a nearly rectilinear portion elsewhere. These observations have been repro

duced by Malone [1992] -  see Figure 1.7 -  by injecting blue dye into the inlet film of a 

fully-flooded forward roll coater. In those regions which are relatively clear, little dye 

has been entrained; this indicates the presence of a recirculation in the flow. Hence 

the existence of eddies near the downstream meniscus is clearly demonstrated and the 

assumption of rectilinear flow is seen to be valid upstream of this recirculation region.

In fully-flooded roll coating the extent of the liquid upstream of the nip is large 

compared to (RHo)* -  a typical length scale in the X-direction -  where R is an ‘average’ 

roller radius defined by

R ~ ( -  2 \Ri + ( 1.1)

and Ho is the semi-nip width. Therefore it is usual to assume that the liquid extends 

to ‘infinity’ upstream of the nip and, as a result of this, lubrication theory is used to 

model the flow in a semi-infinite region extending from far upstream of the nip to the 

downstream recirculation region (Taylor [1963], Savage [1977 a, b]). In the symmetric 

case, with equal roller speeds, Savage [1984] employed Reynolds’ lubrication equation 

for the pressure distribution P(X,Y) :

d
ax

frdH
l2TlVa x

( 1.2)

where P  is the liquid pressure, V  the speed of each roller, r/ is the Newtonian viscosity 

aQd H( X)  the roller separation. In hydrodynamic lubrication, the normal procedure is 

to solve Reynolds’ equation subject to two boundary conditions on liquid pressure. As

suming that the pressure is ambient sufficiently far upstream yields the first (upstream)



Chapter 1; General Introduction 6

pressure condition

P( —oo) =  0 (1.3)

The second pressure condition is usually given by considering the balance of normal 

stresses at the downstream free surface (e.g. Greener and Middleman [1975], Savage 

[1982,1984], Coyle, Macosko and Scriven [1986]). Referring to Figure 1.8 this condition, 

which relates the liquid pressure at X  = C to surface tension pressure at the liquid-air 

interface, yields (Batchelor [1985] pp 60-70)

T
P ( X  = C) =  -

Rc (1.4)

where T  is the surface tension of the liquid and Rcurv is the effective radius of curvature 

of the downstream liquid-air interface at its leading edge.

Unfortunately, the location o f the meniscus is unknown and in order to obtain a 

solution a further boundary condition is required. A major difficulty in applying the 

lubrication approximation to flow where a liquid-air interface forms, lies in supplying 

boundary conditions at the point of formation of the interface that are consistent with 

the lubrication approximation (Taylor [1963]). The first attempt to model a liquid-air 

cavity was made by Reynolds [1886] when he suggested the following conditions at 

rupture of the liquid film
dP „

p =  0 • ax =  0 I1-5)

Swift [1931] and Steiber [1933] independently derived the same condition as Reynolds 

a-ud (1.5) is often referred to as the ‘Swift-Steiber’ condition. A new approach to mod- 

ailing liquid-air interfaces was introduced by Birkhoff and Hays [1963], who suggested 

that the lubrication regime terminates at the ‘separation’ point (5, Y") — see Figure 1.8 

-  which marks the onset o f the reverse flow region and where both

U 0 and ( 1.6)

i*e*» velocity and shear stress are zero. These ‘separation’ conditions are often used 

m conjunction with the additional assumption that the liquid pressure is constant 

throughout the reverse flow region S < X  < C (see e.g. Savage [1982], Carter [1985]).
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Pitts and Greiller [1961] also used lubrication theory for the rectilinear flow por

tion and attempted an approximate solution near the meniscus by using experimental 

evidence which suggested that the meniscus had a parabolic profile. They were able 

to predict regions of recirculation upstream of the coating meniscus and the position 

of the separation point was in satisfactory agreement with their experimental data. 

Williamson [1972] adopted a similar approach when studying the problem of the tear

ing of an adhesive layer between two flexible tapes wound around adjacent rollers. By 

approximating the shape of the meniscus as a sixth order polynomial he was able to 

predict the existence of eddies behind the meniscus similar to those observed by Pitts 

and Greiller.

Greener and Middleman [1975] analysed the symmetric problem, shown in Figure 

1.9, in which roller speeds (V-) and radii (R ) are equal. Their model is based on 

the assumption that the liquid extends over a semi-infinite domain terminating at a 

liquid-air interface where there is a stagnation point and where symmetry conditions 

imply that the gradient of velocity is zero, i.e. dU/dY =  0. Since the uniform layers 

attached to each roller have the same thickness, T\ =  =  T, they showed how the

dimensionless film thickness T/Hq (Ho is the semi-nip width) varied with ¡3 a modified 

capillary number defined by

' ■ (*)(*)'
Benkreira, Edwards and Wilkinson [1981] performed 1500 fully-flooded forward roll 

coating experiments using sets of rollers with size ratios in the range 0.5 < R1/R2 <  2.0, 

to measure the ratio of the film thicknesses on upper and lower rollers, i.e. T1/T2. From 

their data they found T1/T2 to be independent of the size ratio R1/R2, but strongly 

dependent on the velocity ratio S =  V j/V j. They summarized their results by the 

functional relationship

jp- =  0.87 S0-65 for 0.03 < S < 14.9 (1.8)
T2

Note that (1.8) gives an asymmetric split even in the symmetric case of 5  =  1; they 

suggested that this was due to the effect of gravity.
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Savage [1982] extended the work of Greener and Middleman to the general coating 

situation which involves rollers of arbitrary size and speed. He determined the coating 

thickness Ti on the upper roller by formulating two mathematical models for the pres

sure distribution over a semi-infinite domain : the Reynolds and Separation models. In 

the Reynolds model, the pressure curve terminates at a point at which the Reynolds 

conditions (1.5) apply; in the Separation model these conditions are replaced by the 

separation conditions (1.6). Taylor [1963] and Dowson and Taylor [1979] pointed out 

that the Reynolds conditions are appropriate when high liquid pressures are generated 

and the film is split by cavitation within the liquid; this situation is characterized by 

the rollers being highly loaded against each other. Since, in this thesis, attention is 

restricted to the case of rigidly fixed rollers in which the film splits by flow separation 

rather than cavitation, it is only the Separation model which is relevant. A typical 

pressure profile arising from the solution of the Separation model is shown in Figure 

1.10. The overall shape of this curve, which features a sub-atmospheric pressure loop 

immediately upstream of the interface, has been experimentally verified by Floberg 

[1965], Smith [1975], and, more recently, Malone [1992] -  see Chapter 5.

Coyle et al [1986] solved the full asymmetric forward roll coating problem using 

the finite element (F.E.) technique (see §1.5). They found that their numerical film 

thickness ratio predictions could, in the absence o f gravity, be fitted by T1/T2 =  S0-65 

in agreement with Benkreira et al [1981]. The discrepancy between film thickness ratio 

predictions from Savage’s [1982] Separation model (which predicted T1/T2 =  5 0-5), 

and those of Benkreira et al [1981] and Coyle et al [1986], prompted Savage [1992] to

question the validity of the zero tangential shear stress assumption, i.e. 8U/dY =  0, 

when S ^  0 or 1. This has resulted in a more rigorous mathematical model in which 

the lubrication regime terminates at the first stagnation point downstream of the nip 

where U = V =  0; the predictions of his ‘stagnation-point’ model may be summarized 

as:

Tl
t2

5(5 + 3)
(1.9)(1 +  3S)

The inability of lubrication theory to model the two-dimensional flow near the
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downstream meniscus has led to the development of powerful computational techniques 

based on the F.E. method. These techniques are discussed in §1.5. In Chapter 5, 

numerical predictions of T1/T2 for fully-flooded forward roll coating are obtained over a 

wider range than reported by Coyle et al [1986], and are compared with Malone’s [1992] 

experimental data, equation (1.9) and Benkreira et al’s [1981] functional correlation 

(equation (1.8)).

In contrast to the forward case, fully-flooded reverse roll coating, shown in Figure 

1.1 (f), has received little attention to date. This is surprising because it is a common 

coating method due to its versatility, speed and precision. Ho and Holland [1978] and 

Greener and Middleman [1981] have presented simple lubrication-type models for this 

which are useful over a limited, yet important, range of parameters. More recently, 

Coyle, Macosko and Scriven [1990 a] have obtained F.E. solutions of the Navier-Stokes 

equations for the flow in the entire gap exhibiting good agreement with experiment.

1.2.3 The Moderately-Starved Case

In the analyses of roll coating described in §§1.2.2, it is assumed that the clearance space 

at inlet is fully-flooded in the sense that there is a rolling ‘bank’ o f liquid upstream 

of the nip -  see Figure 1.4. In this case the resulting liquid flow/pressure distribution 

is similar to that found in hydrodynamic bearings. If the supply of liquid is reduced, 

however, the inlet becomes ‘starved’ and the ‘bank’ of liquid gradually disappears -  the 

situation depicted in Figure 1.6 (b).

Although there appears to be no previously published work in the literature relating 

to either moderately- or ultra-starved roll coating, the effects of moderate-starvation 

on the load carrying capacity of bearings has been widely studied (see Dowson and 

Taylor [1979]). On the basis of his experimental findings for a flat plate loaded against 

a rotating flywheel, Lauder [1966] proposed that in a moderately-starved inlet the 

lubricant pressure builds up at a location where U =  dU/dY =  0, which he named the 

‘zero-reverse-flow’ boundary condition. Wolveridge, Baglin and Archard [1971] studied 

the effect of moderate-starvation on the load carrying capacity of two cylinders in 

both the rigid and elastohydrodynamic (E.H.L.) cases. They modelled the degree of
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starvation by simply altering the distance from the point o f minimum roller separation 

at which the boundary condition P  =  0 is applied. This was considered to be the 

point at which the lubricant pressure builds up; the outlet boundary conditions were 

the Reynolds conditions (1.5). A typical pressure profile which they obtained for the 

rigid case is shown in Figure 1.11.

In his study of starved E.H.L. bearings, Saman [1974] realised that it is important to 

define precisely what is meant by a starved inlet and proposed that a system is starved if 

all the lubricant supplied at inlet passes uni-directionally through the conjunction (i.e. 

there is no reverse flow at inlet or in the nip; that is to say the rolling bank of liquid 

is no longer present). Unfortunately, Saman’s starvation criterion has only limited 

application in roll coating since it cannot differentiate between cases of ‘moderate’- 

starvation, in which the supply of liquid is only slightly less than that required to flood 

the inlet, and ‘ultra’-starvation in which it has been significantly reduced -  see Figures 

1.6 (a)-(c).

1.2.4 The Ultra-Starved Case: Meniscus Roll Coating

In §§1.2.1 we saw that it is possible to operate a roll coater under conditions in which 

the supply of liquid at inlet has been substantially reduced from that needed to flood the 

inlet -  see Figure 1.5 for the forward case. This ultra-starvation, shown schematically 

in Figure 1.6 (c), results in the additional complications of a second, upstream meniscus 

which meets the web/upper roller at a dynamic wetting line. Owing to the existence 

of two meniscii in this case, one on either side of the nip, ultra-starved roll coating is 

henceforth referred to as ‘Meniscus Roll Coating’.

The complications introduced by the existence o f the inlet meniscus and dynamic 

wetting line are common to many coating operations -  in the following section they are 

discussed in the wider context of general coating flows.
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1.3 Complications Associated with Free Surface Coating 

Flows

1.3.1 Free Surfaces

By their very nature, coating flows are free surface flows. Free surfaces are meniscii, i.e. 

fluid-fluid interfaces. A meniscus is a layer of finite thickness in which the density varies 

rapidly from that of the bulk liquid to that of the bulk gas. However, since the meniscus 

thickness is usually no more than a few tens of Angstroms and is therefore negligible in 

comparison with fluid mechanical length scales, it is convenient to approximate meniscii 

as mathematical surfaces (see Chapter 4). The steep density gradient at a meniscus, 

which is effectively a discontinuity, gives rise to a property known as surface tension 

which produces an isotropic capillary stress within the meniscus not unlike that in a 

stretched rubber membrane.

The presence of one or more free surfaces greatly complicates flow field analyses 

because their location, and thus the flow domain, must be determined as part of any 

solution. Moreover the boundary conditions which are applicable at free surfaces -  

see Chapter 4 -  are highly non-linear which means that any solution technique must 

necessarily be iterative. As a result, viscous free surface problems cannot be solved by 

standard analytical techniques and recourse must be made to numerical methods (see 

§1.5).

1.3.2 Contact Lines

Coating flows invariably contain three-phase contact lines, formed at the intersection 

of two immiscible fluids with a solid boundary. Contact lines can be either:

• Static, if the apparent point of contact is stationary (relative to the solid surface).

• D ynam ic, if the apparent point o f contact translates (relative to the solid sur

face).

Dynamic contact lines are also referred to as wetting lines. Every coating flow has a 

wetting line since liquid must come into contact with, and displace air from, a dry web,
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i.e. the sheet being coated. The wetting line in the forward meniscus roll coater is 

illustrated in Figure 1.12.

Despite their practical importance, very little is known about the physical mech

anisms by which one fluid displaces another at a dynamic wetting line either from a 

molecular or a continuum point o f view (Dussan V [1979]). During coating, liquid 

displaces air from the surface of the substrate at the three-phase contact line where 

air, liquid, and solid meet (see Figure 1.12). When this region is magnified and viewed 

through an optical microscope, the liquid-air interface appears to intersect the sub

strate at a well-defined angle 6C. This angle is termed the apparent dynamic contact 

angle. Burley and Kennedy [1976] carried out an experimental investigation of the 

behaviour of a dynamic wetting line, with particular reference to the mechanism of air 

entrainment. At very low speeds (of the order of millimetres/ sec) the apparent dy

namic contact angle equals the static contact angle. As speed is increased, the apparent 

dynamic contact angle monotonically increases, ultimately reaching a nominal value of 

180°. At sufficiently high speeds thereafter, air bubbles are entrained. Burley and 

Kennedy present an experimental correlation for the critical velocity Vc, above which 

air is entrained, in terms of fundamental liquid properties. In coating flows therefore, 

it is generally necessary to avoid this critical condition, and consequently the factors 

which determine the dynamic contact angle axe of great interest.

Modelling of the flow near the three-phase contact line is complicated by the ‘appar

ent breakdown’ of the classical hydrodynamical equations and/or boundaxy conditions 

in this region. Huh and Scriven [1971], for example, modelled a dynamic wetting line 

by assuming that the fluid-fluid interface was planar, see Figure 1.13. Their analysis 

was essentially a generalisation o f that of Moffatt [1964] from a vacuum-fluid system 

to a fluid-fluid one. Unfortunately their model, in which the wetting line movement 

was approximated by the equations of creeping flow, predicted a physically unrealistic 

non-integrable stress singularity at the dynamic wetting line. They suggested that the 

most likely cause of this anomaly was the inapplicability of the conventional no-slip 

condition very close to the wetting line but they did not discount other explanations 

such as non-Newtonian fluid effects, breakdown of the continuum model or elasticity
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of the solid. However recent work by Savage [1992] suggests that their singularity is 

caused by imposing the contact angle, 0C, to a value other than 180°, i.e. the singularity 

disappears when 0C =  180°.

In the absence of any clear understanding, many authors have made ad hoc mod

elling assumptions to overcome the problem of the non-integrable stress singularity. 

Most analyses have achieved this by postulating slip between liquid and solid in the 

immediate vicinity of the wetting line (Dussan V [1976], Hocking [1976, 1977], Cox 

[1986]) but they suffer from the disadvantage that they do so at the expense of intro

ducing an unknown slip length scale, measuring the distance from the contact line over 

which slip occurs.

A proper treatment of the flow near a dynamic wetting line requires a knowledge 

of physical chemistry and in the light of the small length scales involved it is perhaps 

not surprising that there have been so few papers proposing mechanisms for slip near 

a dynamic wetting line. However, notable exceptions are those due to Ruckenstein and 

Dunn [1977] and Ruckenstein and Rajora [1983] which have proposed mechanisms in 

terms of a chemical potential in the liquid along a solid-liquid interface.

Nevertheless, in practice, the most commonly used expedient to remove the singu

larity which arises if the no-slip condition is used right up to the wetting line, is to 

simply impose a slip velocity distribution which satisfies the requirement that there 

should be perfect slip between solid and liquid very dose to the wetting line. A bound

ary condition for the free surface is also required. At present there appears to be two 

alternatives (see for example, Kistler and Scriven [1983], Chen and Higgins [1988]): (i) 

the position of the wetting line is prescribed and the apparent dynamic contact angle 

0c has to be determined, or (ii) 0C is spedfied (from experimental observation) and the 

wetting line position is a variable to be evaluated. It is evident, from the above discus

sion, that much work still remains to be done on the modelling of flows near dynamic 

wetting lines.
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1.3.3 The Behaviour of a Thin Liquid Film on a Rotating Roller

In meniscus roll coating the liquid which passes into the bead is transported from 

the bath by the viscous lifting action of the lower (applicator) roller -  see Figure 

1.2 (a). It is important to examine the ‘inlet’ film which enters the bead since (i) 

the degree of starvation of the system, and (ii) the film thickness T\ produced on 

the web, are critically dependent on the flux entrained by the applicator roller. Most 

previous roll coating analysts seem to have assumed that a thin liquid film on a rotating 

roller undergoes a rigid body rotation -  unfortunately in most cases this assumption is 

simply not justifiable. Therefore the aim of the present section is to describe the key 

theoretical results relating to the behaviour of a thin liquid film on a rotating roller 

and to discuss the practical problems encountered when measuring the film thicknesses 

produced during roll coating.

Yih [1960] appears to have been the first to study thin film flow in a roll coating 

context: he studied the behaviour of a liquid film on a single roller in order to under

stand the liquid flow'on the rollers o f a paper-making machine. Moffatt [1977] reviewed 

previous work in this area and analysed the flow of a viscous film on the outer surface 

of a horizontal roller using lubrication theory. He concluded that the liquid layer expe

riences substantial shear and the motion can certainly not be approximated by a rigid 

body rotation.

In view of its practical importance, it is surprising that the subject of viscous lifting 

of liquid onto a rotating roller has received so little attention to date. However the 

closely related ‘drag-out’ problem in which a thin liquid film is entrained by the steady 

withdrawal of a sheet from a bath of liquid (see Figure 1.14) has been extensively 

studied. The work of Landau and Levich [1942] initiated a series of detailed theoretical 

and experimental studies of this problem. Their theory was extended by White and 

Tallmadge [1965] to a wider capillary number (Ca =  i)Vt/T) range, while the effects 

of liquid inertia have been considered by Soroka and Tallmadge [1972] and Esmail 

and Hummel [1975]. Wilson [1982] consolidated the work of the previous authors and 

demonstrated that the Landau and Levich result is an asymptotic solution valid as
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the capillary number tends to zero. Tharmalingham and Wilkinson [1978] adapted 

the aforementioned theories to predict the liquid flux picked up by a rotating roller 

partially submerged in a Newtonian liquid and the variation of film thickness around 

the periphery of the roller -  the ‘free-coating’ problem, see Figure 1.15 (a). Their 

analysis involved the numerical integration of the momentum equation in the dynamic 

meniscus region (region 2 of Figure 1.15 (a)) and the matching of the surface curvature 

with that derived for the static meniscus region (region 1) near the liquid surface. Their 

predictions compare well with experiment for low capillary number (up to about 0.1), 

but thickness predictions for higher values are much too large because of the neglect of 

liquid inertia in their analysis.

Tekic and Jovanovic [1982] used a two-dimensional non-linear theory to obtain a 

correlation for predicting the liquid flux picked up by a partially submerged roller 

during free coating. In their ‘Inclined-Plane’ model they assumed that at the point at 

which the roller leaves the liquid, the situation can be approximated by a flat surface 

being withdrawn at the same angle of contact, as shown in Figure 1.15 (b). Wu, Weng 

and Chen [1985] also adopted an ‘inclined-plane’ model and, using the flow regions 

proposed by Landau and Levich, they included inertia force terms and more realistic 

two-dimensional boundary conditions at the free surface to produce reasonably accurate 

film thickness ratio predictions over a wide range of capillary number.

Even if the difficulties in analysing the entrainment of liquid onto the surface of a 

partially submerged roller are ignored, it is important to account for the behaviour of a 

thin liquid film on a roller in any attempt to measure film thickness at a specific point 

(Malone [1992]). Consider the partially submerged roller shown in Figure 1.15 (a); at 

no time does the liquid film achieve an asymptotic thickness. In fact the thickness 

decreases as 0i increases. In simple terms, the explanation involves the fact that the 

component of gravity in the direction of motion changes as the orientation of the layer 

is changed: the liquid farthest away from the roller surface is affected most, and this 

determines the velocity profile across the depth of the liquid layer.

Tharmalingham and Wilkinson [1978] present results o f predicted film thickness for 

variations of system parameters. In particular their Figure 5 shows how the film thick
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ness varies around the roller for a range of capillary numbers. Their results predict that 

the variation in thickness around the periphery o f the roller increases as Ca increases 

and, furthermore, for 0,- in the range —90° to 60° with 6l =  120° (refer to Figure 1.15

(a)),

• At Ca =  0.01, film thickness varies by 10%

• At Ca =  0.1, film thickness varies by 20%

• At Ca =  0.5, film thickness varies by 40%

Now under typical fully-flooded roll coating conditions, Ca «  1.0. Therefore, single 

point film thickness measurements will not give a typical average film thickness reading, 

unless the operator can equate the position of measurement with the velocity profile 

there (Malone [1992]).

However, viscosities of liquids for industrial meniscus roll coating applications are 

low (of the order of 1 x 10-3 Nm~2s) compared with those used in fully-flooded roll 

coating where viscosities can range from 0.05 — 500 Nm~2s. This fact, coupled with 

the slower roller speeds necessary to maintain the bead, means that a typical capillary 

number in industrial meniscus roll coating is given by Ca <  0.01. This alleviates the 

problems caused by film thickness variation around the roller since for this range of 

capillary number the variation is predicted to be less than 10%. In the experimental 

measurements quoted in this thesis (which are due to Malone [1992]), a Newtonian oil, 

Shell Tellus R5, was used whose viscosity at the laboratory temperature of 20°C was 

8.4 x 10~3Nm~2s -  higher than that of typical industrial coating liquids. Fortunately, 

Malone [1992] circumvented any possible film thickness variation problems by employing 

a scraper collection method on both rollers, which involves removing the liquid film from 

a roller surface using a scraper blade. This gives the fluxes of the films on each roller, 

which are easily converted to average film thicknesses since average thickness equals 

the ratio of flux to roller speed.
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1.4 The Phenomenon of Ribbing

The main purpose of this thesis is to investigate steady roll coating processes which 

produce uniform films (uniform in the sense that there is no variation along the axes of 

the rollers) under different degrees of starvation. It is important, however, to realise that 

all industrial coating processes are susceptible to instabilities which limit the possible 

operating conditions since there are usually stringent tolerances on the uniformity of 

films required. In the case of the fully-flooded forward roll coater the speed of operation, 

for a given liquid and geometry, is limited by the appearance of the ‘ribbing’ instability 

at high roller speeds. This is demonstrated by Carter’s [1985] experiments at Warren 

Spring Laboratory, an example of which is shown in Figure 1.16. The ribbing instability 

is characterised by a periodic, i.e. waved, variation in film thickness along the axes of 

the rollers. There exists an extensive literature on the ribbing phenomenon, the salient 

features of which are summarized below.

The first documented observation of ribbing seems to have been made by Hoare 

[1937] in which he reported the formation o f ribs when forward rolling is used to tin 

metal sheets. Pearson [1960] was the first person to undertake a theoretical investigation 

of this class of problem. He examined the effect of a small perturbation of the form 

e e*1 cos(nZ) on the position of the liquid-air interface and solved for the velocity 

field describing the motion of a viscous liquid under a wedge-shaped spreader — see 

Figure 1.17. Unfortunately his analysis lacked a complete set of boundary conditions. 

Consequently the distance, C, from the centre of the spreader to the free surface had 

to be determined from experiments and as such the theory in itself did not yield an 

explicit criterion for the onset of the instability.

A second, important theoretical contribution to this problem was made by Pitts 

<uid Greiller [1961]. They investigated coating in the system shown in Figure 1.9 and 

analysed the liquid motion by means o f a linear stability analysis. This contribution was 

at two levels of sophistication. The first, also considered by Savage [1977 a], involved 

a relatively crude stability analysis in which the equilibrium of the liquid-air interface
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was considered and shown to remain stable to small disturbances provided

dX  +  RcurJ  ~ ° ( 1.10)

where P  is the liquid pressure immediately upstream of the interface, T  the surface 

tension of the liquid, and Rcurv the radius of curvature of the interface. However, 

though necessary, (1.10) is not sufficient to predict the onset of ribbing. Using (1.10) 

Pitts and Greiller obtained conditions for the onset o f ribbing involving the Capillary 

number, Ca =  rjV/T, and the geometry parameter, Hq/R which enabled prediction of 

the critical Capillary number, Ca*, above which ribbing can be expected. This took 

the form

Ca* «  5 0 ( j f )  (1-11)

Subsequently using a second, more sophisticated stability analysis they obtained the 

result

Ca* ( 1.12)

Both of these predictions were in poor agreement with their experimental data to which 

they fitted the line

Ca* =  31.0 0 ^ )  (1.13)

A more refined experimental study was carried out by Mill and South [1967] in which 

they used rollers of equal speed but with different radii. They found the critical Cap

illary number to be given by

Ca* (1.14)

Greener, Sullivan, Turner and Middleman [1980], using rollers of equal size and speed, 

found the following criterion for ribbing

Ca* =  1875.0 ^ 2 (1.15)

Cheng [1981] and Savage [1984], noting these widely differing theoretical predictions, 

also observed that the experimental data reported fell into separate regions of the 

(Ca,H0/R) plane. Following a suggestion o f Cheng, Savage [1984] performed a linear
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stability analysis for both the flat plate/ roller (see Chapter 5) and equal speed two 

roll coater geometries using the separation boundary conditions. This analysis yields 

a criterion for ribbing involving the two dimensionless parameters (T/tjU)(Ho/R) and 

(T/rjU) (Ho/R )£. For the case of the equal speed two roll coater, theoretical pre

dictions exhibit remarkably close agreement with the experimental data of Pitts and 

Greiller [1961], Mill and South [1967] and Greener et al [1980] for 0 < Ca <  1 which is 

almost the whole region of interest for coating problems. Carter and Savage [1987] and 

Carter [1985] have conducted an analytical and experimental study into the effect of 

varying the peripheral speeds of the two rollers, in a roll coater, on the onset of ribbing. 

They were able to determine the approximate value of the capillary number at the onset 

of ribbing for a given speed ratio and roll coater geometry. Their predictions agreed 

well with data from Carter’s [1985] experiments at the Warren Spring Laboratory.

1.5 Numerical Methods For Free Surface Flows : Finite 

Elements

The last twenty-five years has seen many theoreticians working in the area of coating 

and free surface flows turn to computers as a means o f obtaining numerical solutions to 

their problems. In any numerical solution, the differential equations governing the flow 

are written in an approximate, discrete form resulting in a system of algebraic equations 

whose solution yields the physical quantities o f interest -  for example, the streamfunc- 

tion and vorticity or the fluid velocity and pressure -  at a number of points (the nodes) 

within the flow domain. The primary difference between numerical techniques lies 

in the way in which the governing equations are recast into algebraic equations (Chen 

[1991]). Once these equations have been derived, they are solved by an efficient solution 

algorithm.

In the finite-difference (F.D.) method, which is widely used in Computational Fluid 

Dynamics, the differentials arising in the governing equations are approximated by fi

nite differences -  see for example Hirsch [1988]. Unfortunately this method is prone to 

difficulties when solving flows in domains of irregular shape, as is the case in general



Chapter 1: General Introduction 20

for free surface flows, because of the problem of constructing finite difference approx

imations to these differentials on irregular grids. For this reason the F.D. method is 

not a natural choice for the solution of free surface problems; nevertheless Ryskin and 

Leal [1984] have tackled this interpolation problem by using a numerically generated or

thogonal co-ordinate system which is ‘Boundary-Fitted’ in the sense that all boundaries 

coincide with a co-ordinate line of the co-ordinate system.

A second method that has been employed for free surface flow problems is the 

Boundary Element (B.E.) technique, used by Kelmanson [1983] for the ‘die-swell’ prob

lem in extrusion, shown in Figure 1.18. The B.E. technique has two advantages over the 

F.D. method: it has the topological flexibility required for the solution of free surface 

problems and is cheaper since only boundary information is evaluated. It has, how

ever, serious limitations. It is restricted to the limiting cases of zero Reynolds number, 

where the governing equations are the linear Stokes’ equations, or inviscid, irrotational 

flow where the equations reduce to Laplace’s equations for a velocity potential. In this 

method, fundamental solutions of the linear governing equations are used to reduce 

the general n-dimensional problem to the solution of a set of (n-l)-dimensional integral 

equations.

The finite element (F.E.) technique is the most commonly used numerical method 

for solving free surface problems. It is more expensive than F.D. or B.E. methods, but 

this is more than compensated for by its inherent advantages of being able to combine 

the desirable features of the F.D. method, namely an ability to include the effects of 

non-linear fluid inertia, three-dimensionality and time dependency, with the topological 

flexibility of the B.E. method. In the light of these benefits, all free surface problems in 

this thesis are solved by the F.E. method; the basic philosophy behind F.E. is described 

in Chapter 4 and in Appendix B.

Many computational methods in fluid mechanics use either the streamfunction or 

the streamfunction and vorticity as computational variables in incompressible flow 

problems -  see for example Olson and Tuann [1978] and Burggraf [19G6]. In these 

methods the streamfunction is calculated first and the pressure must be recovered via 

a separate computation. This is a serious drawback when solving free surface flows
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because the conditions at the free surface are given in terms of the stress components 

which involve the pressure explicitly. It is therefore preferable to choose a F.E. scheme 

with fluid velocity and pressure, known as the ‘primitive’ variables, for the solution of 

free surface flows.

The F.E. method, with its traditional predominance in the area of stress analysis, 

only really began to attract the attention of computational fluid mechanidsts after 

Zienkiewicz [1977, first published 1967] and Heubner [1975] showed that it could solve 

flow problems which up until then had been beyond the scope of F.D. methods. For 

example, Thompson, Lawrence and Fong-Sheng [1969] solved the problem of a liquid 

being squeezed between two flat plates, giving a fairly detailed account of the F.E. 

techniques used. These early techniques were gradually extended to accomodate the 

effects of a free surface -  the first published F.E. solutions of free surface flows (both 

involving liquid jets) were those of Nickell, Tanner and Caswell [1974] and Tanner, 

Nickell and Bilger [1975]. Tanner et al [1975] also solved problems involving Poiseiulle 

flow and contraction, effects in a tube from which they were able to test the reliability 

of their program before applying it to more complex free surface flows.

However, there still remained a considerable restriction on further progress due to 

the large amounts of storage required by the F.E. method. Hence, m addition to the 

increased power and efficiency of modern computing machines, the advent of frontal 

solution programs, first developed by Irons [1970] and later refined by Hood [1976] and 

Beer and Haas [1982], was a second important factor influencing the growth of research 

in the area of free surface flows. These Frontal Methods greatly improved the efficiency 

of computer storage for F.E. programs and the principle behind them is explained in 

Appendix C.

Iterative methods of various kinds are required when solving free surface flows since 

the free surface position is unknown o priori. In the first few papers on this subject, 

successive approximation techniques which proceeded in a three part cycle were used: 

(i) a free surface shape is assigned, (ii) a flow field within that shape is found from 

the Navier-Stokes system with one o f the free surface boundary conditions omitted, 

(iii) the free surface is updated to satisfy as closely as possible the previously omitted
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boundary condition. This method, although fairly simple to implement, experienced 

severe convergence difficulties: convergence, if at all, was slow and depended on the 

choice of omitted boundary condition (Silliman and Scriven [1980]).

Ruschak’s [1980] boundary location method, which he called the ‘Boundary Sup

ports’ technique, led to a significant improvement in the parametrisation of free surface 

boundaries by the F.E. method. He succesfully applied this free surface representation, 

shown in Figure 1.19, to the flow of a liquid from a slit which agreed well with Richard

son’s [1970] analytical solution. Following the work of Silliman and Scriven [1978, 

1980], Saito and Scriven [1981] used a simpler version of Ruschak’s boundary location 

method to analyse the slot coating problem shown in Figure 1.20. They introduced 

a new solution technique based on Newton iteration which dramatically improved the 

convergence characteristics -  in particular the convergence rate -  for free surface flows. 

In this Newton iteration procedure, the shape and location of the free surface, and the 

velocity and pressure fields are all calculated simultaneously.

Figure 1.21 (a) illustrates the F.E. grid Silliman [1979] used to analyse a slot coating 

problem. Using the method described by Ruschak [1980], the vertical co-ordinates of 

the nodes were given as fixed ratios of the height, H, of the vertical line on which the 

node lay, thus giving an even distribution o f elements at each iteration. Unfortunately 

as the Reynolds number and Capillary number increased for a fixed flow rate or the 

flow rate was decreased for fixed Reynolds or Capillary numbers, the curvature of the 

free surface increased until an invading meniscus occurred. This led to singularities in 

Silliman’s formulation which Saito and Scriven [1981] and Carter [1985] were able to 

avoid by parametrising the free surface into two separate regions -  see Figure 1.21 (b).

In the region where the curvature of the meniscus is large, the radial distance 

between a polar origin O (outside the liquid) and the free surface is parametrised by 

r. The co-ordinates of the nodes within this region are given as fixed ratios of the 

distance between the free surface and a fixed point in the liquid. This representation 

is successfully applied to the slot coater in Chapter 4.

Ruschak [1982] seems to have been the first to seek a numerical solution of the full 

two-dimensional flow between a pair of partially submerged counter-rotating rollers (the
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situation first studied by Pitts and Greiller). He realised that the difficulty in applying 

the lubrication approximation lies in the specification of boundary conditions at the 

point of formation of the liquid-air interface. He obtained a solution by the method 

of matched asymptotic expansions in which the first term of the outer expansion is 

generated from the lubrication approximation; the first term in the inner expansion 

describes the two-dimensional flow in the vicinity of the interface. These inner equations 

are analytically intractable, so he obtained approximate solutions by the F.E. method. 

Matching between inner and outer expansions provides conditions on the pressure and 

pressure gradient which allow the completion of the outer, lubrication flow. Ruschak’s 

asymptotic analysis is restricted to flow between a pair of rollers in the limit Hq/R —► 0, 

i.e. the limit of parallel roll surfaces at the film splitting region. This asymptotic 

analysis has been extended by Coyle et al [1986] to the asymmetric case.

Coyle, Macosko and Scriven [1982] developed a generally applicable F.E. analysis 

of fully-flooded flow between rollers with flux splitting for the relatively simple case of 

symmetric flux splitting. They obtained good agreement with the experimental results 

of Pitts and Greiller for the position of the interface over the range 0.05 < Ca < 0.4 and 

zero Reynolds number. Though primarily interested in Newtonian liquids, they were 

able to predict that a shear-thinning rheology has the effect of increasing the size of the 

eddies as well as causing the position of the meniscus to move away from the nip. This 

method has been extended to: (i) asymmetric forward roll coating of Newtonian (Coyle 

et al [1986]) and non-Newtonian (shear-thinning) (Coyle, Macosko and Scriven [1987]) 

liquids, (ii) reverse roll coating (Coyle et al [1990a]), (iii) forward roll coating with 

deformable rollers (Coyle [1988, 1990]), and (iv) to analyse the stability of symmetric 

forward roll coating (Coyle, Macosko and Scriven [1990b]). Note that in all of these 

analyses the flow is assumed to be fully-flooded at inlet. Examples of computational 

grids used in the solution of these problems are shown in Figure 1.22.

All of these studies of roll coating have been based on the ‘Spine Method’ developed 

by Kistler [1983] from Ruschak’s boundary location technique. The ‘Spine Method’ is 

described in the excellent review of Kistler and Scriven [1983]. This work discusses 

at length (i) how the free surface is represented; (ii) techniques for handling contact
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lines (static and moving); (iii) outflow and inflow conditions. These ideas are further 

extended from the case of a liquid-gas interface to the treatment of the interface between 

two viscous liquids, as is required for example in multilayer printing processes.

The theory and practical application of the ‘Spine Method’ to the solution of free 

surface flows is discussed at length in Chapter 4.

1.6 Outline of The Present Work

This thesis considers the steady roll coating, principally in the forward mode of opera

tion, of a Newtonian, incompressible liquid under different degrees of starvation. The 

main aim of Chapter 2 is to develop a simple, analytical model of meniscus roll coating. 

In order to achieve this two related flow problems, namely the flow in (i) a lid-driven 

cavity and (ii) an open, driven cavity are modelled as creeping flows in rectangular cav

ities and are solved analytically in the form of a truncated biharmonic series. The main 

features of these two problems are incorporated into a simple model of meniscus roll 

coating (the Zero Flux Model) in which the curvature of the menisdi and flux through 

the bead are neglected. The analytical solution of this model, which also takes the form 

of a truncated biharmonic series, predicts streamline patterns and pressure profiles rad

ically different from those observed in the fully-flooded case. The analytically-obtained 

streamline patterns are compared with numerical ones obtained from a streamfunction- 

vorticity F.E. method (see Gaskell, Savage and Thompson [1991]).

In Chapter 3, the results of Chapter 2 are used to further simplify the flow in the 

central ‘core’ of the meniscus roll coating bead, i.e. the region sufficiently far from 

the menisdi. The core flow is modelled as a combination of Poisdulle and Couette 

flow with a small flux through the bead and a film thickness model is developed to 

predict the average film thicknesses produced on upper and lower rollers in forward 

meniscus roll coating as a function of the operating parameters. These film thickness 

predictions are compared with experimentally obtained results due to Malone [1992] 

and then utilised to develop a simple model for the flow in the entire liquid bead when 

a. small flux passes through the nip. This extended model is solved numerically by
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the streamfunction-vorticity F.E. method. Streamlines obtained from this numerical 

solution are compared to those seen experimentally.

The full two-dimensional flow near free surfaces, including the effects of surface 

tension, can only be analysed by computational means. In Chapter 4, a FORTRAN 

F.E. code based on Kistler’s [1983] ‘Spine Method’ is developed and applied to flow 

problems of gradually increasing complexity. The code is validated against previously 

obtained results for the slot- , symmetric forward roll- , and asymmetric forward roll

coating free surface problems.

In Chapter 5 the code is used to obtain numerical predictions of the film thick

ness ratio T\jT% for a fully-flooded forward roll coater over a wider range of velocity 

ratio than previously reported. The code is then extended to investigate the effects 

of starvation in two closely related roll coating geometries. The first of these, known 

as the flat plate/roller geometry, is chosen since experimental pressure profiles may be 

obtained. The second is the familiar two roll system. Numerically obtained velocity 

vectors and pressure profiles are plotted as a function of the degree of starvation in 

both cases and compared with Malone’s [1992] experimental results for similar flow sit

uations. Finally, numerical predictions of the dependence of the average film thickness 

ratio Ti/T2 on the velocity ratio S for both the moderately- and ultra-starved cases are 

compared with Malone’s [1992] experimental film thickness results, Benkreira et al’s 

[1981] experimental correlation and Savage’s [1992] analytical prediction.

Chapter 6 summarizes the main results of the work presented in this thesis and 

looks at ways in which it might be extended, including some suggestions for future 

work.

Appendix A describes the theory developed by Smith [1952] and Joseph and Sturges 

[1978] which is used in Chapter 2 to obtain analytical solutions for the flows in lid-driven 

and open, driven cavities by the method of biorthogonal series expansions. Appendix 

B describes the streamfunction-vorticity F.E. technique used in Chapters 2 and 3 with 

particular reference to the application of boundary conditions and the treatment of 

corner nodes by expanding the solution about the corners. Appendix C contains a basic



Chapter 1: General Introduction 26

introduction to the Banded-Matrix and Frontal Solution methods for solving the F.E. 

equations.
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c) d)

Figure 1.1: Selected Coating Operations (Kistler and Scriven [1983]): (a) Rimming 

flow; (b) dip coating; (c) bead coating; (d) knife coating; (e) forward roll coating; (f) 

reverse roll coating; (g) slide coating; (h) curtain coating
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(a)

Figure 1.2: The Two Roll Coating Configuration; (a) three-dimensional oblique view, 

(b) cross-section showing the nip region
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Figure 1.3: An Experimentally-Obtained View of the Nip Region of a Fully-Flooded 

Forward Roll Coater (Malone [1992])

Figure 1.4: The Upstream Bank of Liquid Characteristic of a Fully-Flooded Forward 

Roll Coater (Malone [1992])

Flgure 1.5: An Experimentally-Obtained View of the Nip Region of an ‘Ultra-Starved’

Forward Roll Coatcr (Malone [1992])
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Figure 1.6: Inlet Conditions for a Forward Roll Coater: (a) fully-flooded, (b) moder

ately-starved, (c) ultra-starved
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Figure 1.7: Flow Visualisation of a Fully-Flooded Forward Roll Coater (Malone [1992])

Figure 1.8: Flow Near the Film-Splitting Point in Forward Roll Coating
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Figure 1.9: Symmetric Film Splitting in Forward Roll Coating

ATMOSPHERIC 

PRESSURE LEVEL

Figure 1.10: A Typical Pressure Profile from the Separation Model
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Figure 1.11: A Typical Pressure Profile with Reynolds Conditions at Outlet (Wolveridge 

et al [1971])

F R E E  S U R F A C E

Figure 1.12: The Dynamic Wetting Line in Forward Meniscus Roll Coating
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Figure 1.13: Huh and Scriven’s [1971] Model of a Dynamic Wetting Line

Vs

Figure 1.14: The Drag-Out Problem
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(a) (b)

Figure 1.15: The Free Coating Problem; (a) for a rotating roller, (b) for a flat plate 

analogy

Figure 1.16: The Ribbing Phenomenon (Carter [1985])
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Figure 1.17: The Wedge-Shaped Spreader (Pearson [I960])

A I R

Figure 1.18: The Die-Swell Phenomenon
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S e c t i o n  o f  a  g rid  sh o w in g  th r e e  b o u n d a ry  su p p o rts . 

E a c h  s u p p o rt s ta r ts  a t a  n o d e  fix e d  in  s p a c e  ( □ )  an d  

e n d s  a t  a  m o v e a b le  n o d e  o n  th e  f r e e  s u r f a c e  ( • )

F r e e  S u r f a c e

Figure 1.19: Ruschak’s [1980] ‘Boundary Supports’ Free Surface Representation
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Figure 1.20: The Slot Coater
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Figure 1.21: F.E. Grids for the Slot Coater: (a) Silliman [1980]; (b) Carter [1985], 

including construction lines for region 2
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Figure 1.22: F.E. Grids Used in Numerical Solutions of (a) asymmetric forward roll 

coating (Coyle et al [1986]), (b) reverse roll coating (Coyle et al [1990a])
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Chapter 2

The Zero Flux Model of 

Meniscus Roll Coating

2.1 Introduction

In Chapter 1 it was noted that roll coating may be operated under different degrees of 

starvation. In the fully-flooded case, the inlet is bathed in an ample supply of liquid, 

whereas in the moderately- and ultra-starved (meniscus roll coating) cases, insufficient 

liquid is picked up to flood the inlet — see Figures 1.6 (a)-(c). It is possible to define 

‘starvation’ in terms of a dimensionless flux A = Q/2VHo, where Q is the total flux 

between the rollers, V =  (Vi +  V2)/2  is the average speed of the rollers, and H0 the 

semi-nip width. In Chapter 4 it will be seen that in the fully flooded, symmetric (equal 

speed and radii rollers) case A lies between 1.3 and 1.4, so any value of A below that 

lor the fully-flooded situation corresponds to a starved case.

The purpose of this and the following chapter is to mathematically model the two- 

dimensional flow in the bead of the meniscus roll coater, shown experimentally in Figure 

1-5. However, before one can develop a mathematical model of a physical process it is 

important to examine all the factors which influence it. In a liquid flow problem, such a 

survey should consider (i) the rheological and physical properties of the working liquid, 

(ii) the competing forces in order to determine which are dominant, and (iii) the shape 

of the liquid domain. The task of the mathematical modeller is to use the results of

41
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this survey to develop a model which includes only those features which are dominant. 

Having developed a model, its predictive power must be tested against experiment 

in order to validate and establish its range of applicability. A good correspondence 

suggests that the key features o f the flow have been captured, otherwise either the 

existing model must be refined or a new one developed incorporating additional physics. 

Clearly the development of a mathematical model may be viewed as an iterative process.

Turning now to meniscus roll coating; in §§1.2.4, §1.3 we saw that ultra-starvation 

has important implications for the flow since it leads to the appearance of a second, 

highly curved meniscus on the upstream side of the liquid bead. Moreover because the 

domain of interest (i.e. the liquid bead) has an irregular shape, the full flow problem 

cannot be solved using classical analysis. In practical terms, this means that simple 

modelling is limited to the flow in the central ‘core’ of the bead, sufficiently far from 

the meniscii -  see Figure 2.1. Although the principal aim o f this chapter is to develop 

a simple model for meniscus roll coating, it is instructive to first focus attention on two 

related problems. These are the flows in (i) a lid-driven cavity, (ii) in an open, driven 

cavity; both are ‘cavity-driven’ flows which form part of a sub-class of problems known

as ‘ creeping’ (or Stokes) flows.

2.2 The Equations of Creeping Flow

The steady flow of a Newtonian, incompressible liquid of constant density p and vis

cosity tj is governed by the Navier-Stokes equations, viz

pU.VU =  - V jP +  r, V2U (2.1)

0 =  V.tr (2.2)

where U_ and P are the liquid velocity and pressure respectively. Suppose that flow is 

‘slow’ in the sense that the liquid inertia term, given by the left hand side of (2.1), is 

negligible compared to the viscous and pressure terms, then the Navier-Stokes equations 

reduce to the Stokes equations for creeping flow

(2.3)0 - V P  +  7?V2£
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0 =  V.Ï7 (2.4)

Taking the curl o f (2.3) eliminates the pressure gradient term V P  leaving

0 =  curl(V2£ )  (2.5)

For a two-dimensional, incompressible flow it is possible to define the vector 

£  = (0 ,0 ,t f (X ,r ) )  such that V =  curl (£ ). Replacing U by curl£ in (2.5) yields 

the biharmonic equation for the streamfunction Ü?(X,Y).

V 4 $  =  0 (2.6)

2.3 Flow in a Lid-Driven Cavity

The first creeping flow problem to be considered is that inside a ‘lid-driven’ cavity, 

illustrated in Figure 2.2 (a). It is the steady, two-dimensional flow induced in a solid- 

walled, rectangular cavity by shearing the liquid on top by a uniformly moving plate. 

This problem, a simple illustration of a flow with closed streamlines, has received much

attention in the literature. Indeed it has become a benchmark problem for the testing

of numerical schemes in fluid mechanics -  see Gaskell, Lau and Wright [1988].

Since in this thesis we axe assuming that the liquid is Newtonian and incompressible 

then, referring to Figure 2.2 (a), the dynamic behaviour of this flow may be described 

in terms of a cavity Reynolds number Re = p UD/rj, where p and are the liquid 

density and viscosity respectively, while the effect o f the cavity geometry is described 

by the aspect ratio A* =  D/L. In his paper Burggraf [1966] obtained finite-difference 

(F.D.) numerical solutions for the flow in a square cavity (A* =  1) for 0 < Re <  400. 

Pan and Acrivos [1967] presented a detailed F.D. numerical solution for the creeping 

flow case (Re =  0) for cavities with aspect ratio 0.25 < A* < 5. Their fundamental 

Paper also includes experimental data taken in cavities with A* = 1 and A* = 10 

over the range 20 < Re < 4000; their flow visualisations were in good agreement with 

streamline predictions from Burggraf’s numerical solution. Other experimental and 

theoretical studies of flows in lid-driven cavities include those of Ghia, Ghia and Shm 

[1982] and Prasad, Perng and Koseff [1988].
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The flow in a lid-driven cavity is commonly reformulated in terms of a boundary 

value problem for the streamfunction (see e.g. Burggraf [1966]). In order to achieve 

this, the boundary conditions shown in Figure 2.2 (a) must be rewritten in terms of

the streamfunction.

Boundary Conditions

(a) No-Slip Conditions

The no-slip hypothesis of conventional fluid mechanics states that the liquid velocity 

at a solid surface is equal to the velocity of the solid surface. It may be shown that 

if ¥ is the streamfunction of a flow and U = (U,V) are the cartesian components of

liquid velocity then
D _  8 £  v  =  (2.7)
u  ~ dY ’ 9X  K '

Hence relations (2.7) enable the no-slip conditions in Figure 2.2 (a) to be written in 

terms of derivatives of the streamfunction.

(b) A Closed Liquid Domain

In the lid-driven cavity flow, the liquid domain is closed, i.e. no liquid crosses the 

boundaries. However, the difference in value of the streamfunction at two different 

points represents the net liquid flux between these points. Therefore if there is no net 

liquid flux between two points, then the streamfunction has the same value at these 

points. This means that the streamfunction is constant on the boundaries of a closed

liquid domain; this constant is usually taken to be zero.

Now focus attention on the case in which the lid velocity U is so small that the 

governing equations are those of creeping flow (equation (2.6)). Introducing the dimen

sionless quantities (refer to Figure 2.2 (a)) u =  U jU ,x  =  X /( I /2 ) ,y  =  Y /( I /2 ) ,  

iJj =  $/(Z7X/2), and A* =  D jL  (the cavity ‘aspect ratio’ ), enables the slow flow 

in a lid-driven cavity to be reformulated as the dimensionless boundary value problem 

shown in Figure 2.2 (b). Since the flow field is closed, it is convenient to take V> =  0 on 

all four boundaries. From equation (2.7) the boundary conditions on the side walls are
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while those on the upper and lower walls yield

jjj(x ,2A *) =  1 , tl>(x,2A*) = 0 (2.9)

=  0 ,  ip(x,0) =  0 (2.10)

Joseph and Sturges [1978] postulated a solution to this boundary value problem in the 

form of a biharmonic series

=  £  {A n e* "b '2A"> +  Bn e - ” » } ( 2.11)

where (A n, Bn) are (complex) constant coefficients, are complex eigenvalues and the 

functions are even Papkovich-Fadle eigenfunctions -  see Appendix A. The eigenval

ues sn are chosen so that the side wall conditions (2.8) are automatically satisfied.

The complex coefficients (A n, Bn) are evaluated using a truncation technique em

ploying Smith’s [1952] biorthogonality relation. This is described in Appendix A. When 

the coefficients have been determined the streamfunction at any interior point of the 

liquid may be obtained by simply summing the series (2.11). Table 2.1 shows values 

of the streamfunction M  and horizontal component of liquid velocity {d^/dy) on the 

upper and lower lids of a cavity with A* = 5, calculated by truncating (2.11) after 20 

terms. The convergence to the boundary conditions (2.9), (2.10) is satisfactory. Note 

that at the upper right hand corner, which is formed at the junction of the moving 

lid with the right hand side wall, the liquid velocity is zero. This is a consequence of 

selecting the eigenvalues $n in order to satisfy the conditions (2.8). In fact the exact 

nature of the flow near this junction cannot be determined; this point is expanded upon 

in Appendix B, which deals with numerical techniques for modelling junctions of this 

kind.

It is possible to compare the streamfunction values obtained from the semi-analytical 

solution (2.11) with those from a corresponding numerical solution obtained using the 

‘streamfunction-vorticity’ F.E. method for creeping flows, described in Appendix B. 

Numerical solutions are obtained using triangular elements, for the reasons described 

in §B.2, while the storage requirement needed to solve the F.E. equations (equations 

(B.20), (B.21) of Appendix B) is reduced by using a ‘banded-matrix’ solver from the
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NAg F.E. library of subroutines -  see Appendix C for tlie philosophy behind this solu

tion technique. It is important, however, to check any F.E. solution since its accuracy 

depends on (i) the degree of refinement of the computational mesh; (ii) the numerical 

integration (in this case Gaussian Quadrature) schemes chosen. For the former, it is 

sometimes possible to use theoretical error analysis, e.g. the ‘Patch Test’ (see Carter 

[1985] PP 145-148), but in the present application it is more convenient to simply ob

tain solutions on two or more grid levels, and then test whether the solutions are in 

reasonable agreement. A similar process must also be carried out to test the effect of

the quadrature scheme on the solution s accuracy.

Numerical solutions »ere obtained using the 3 grids shown in Figure 2.3: grids 

(a) and (b) are symmetric about the vertical cavity centreline, x =  0, and consist of 

144 elements (329 nodes) and 21C elements (481 nodes) respectively. Grid (c) also 

has 144 elements and 329 nodes, hut is asymmetric about the cavity centreline; this 

enables us to examine the effect of grid asymmetry on the numerical results. All 

grids are refined at the upper corners due to the indeterminate nature of the How 

near these points. Numerical results were obtained using each grid and every possible 

combination of quadrature schemes for area integrals (i.e. (A ), (B), (C), (D) of Figure 

B.6) and boundary integrals ((a), (b), (c) of Figure B.7) described in Appendix B. Close 

examination of these results showed that solutions obtained using any of the above 

combinations were in agreement to the third decimal place with an analytical solution 

obtained by truncating (2.11) after 30 terms (see Gaskell, Savage and Thompson [1991]), 

regardless of which grid was used. However as expected, grid (c) introduced a slight 

asymmetry (about the line > = 0) into the numerical solutions.

When scheme (D) (with one negative weight) was used, the numerical solutions 

were in extremely poor agreement with the analytical solution (2.11). This is a problem 

identified by previous authors (e.g. Smith [1982], Carter [1985]) and is thought to be a 

Product of using a quadrature scheme with a negative weight, which can lead to severe 

rounding errors during the computation. Changing the quadrature scheme had only a 

minor effect on execution times for the numerical solutions: those obtained using grids 

(a) and (c) took approximately 70 c.p.u. seconds (all computations were performed on
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an AMDAHL 5860 computer), compared with 110 c.p.u. seconds when grid (b) was 

used. On the basis of these numerical results it was decided that all streamfunction- 

vorticity F.E. solutions presented in this thesis would be calculated using the 4-point 

scheme (A) for area integrals and the 2-point scheme (a) for boundary integrals.

Figure 2.4 shows streamlines computed (a) analytically (with 20 terms in the series

(2.11) ) and (b) numerically, using grid (a) of Figure 2.3, and (c) due to Pan and Acrivos 

[1967] for a square cavity (A* = 1). The agreement between the analytical, numerical 

and published solutions is excellent; note that truncating the series after 20 terms is 

sufficient to resolve the corner eddies. Figure 2.5 shows streamlines for a cavity with 

A * = 5. The analytical results agree well with those from Pan and Acrivos’ [1967] 

numerical study; again the corner eddies are resolved by taking 20 terms in the series

(2.11) . Note the interesting prediction that the vortex structure depends on the cavity 

aspect ratio A’ . This suggests a possible extension to the work presented here, namely 

a study in order to determine the exact nature of the transition in the vortex structure 

as A* is increased.

2.4 Flow in an Open, Driven Cavity

The next problem to be studied is the slow flow of a Newtonian, incompressible liquid 

in an open cavity generated by the steady rotation of a cylinder, shown in Figure 2.6 

(a). This problem has received recent attention from Canedo and Denson [1989]. In 

their mathematical model of this flow, they augmented the assumptions, used in §2.3, 

of a creeping, steady, two-dimensional flow, with the following additional ones:

(i) Neglect the curvature of the roller.

(ii) Neglect the influence of the thin lubrication film attached to the roller which flows 

from the cavity at the bottom and re-enters at the dynamic wetting line.

(iii) Assume a planar liquid-gas interface.

(iv) The gas above the liquid remains at uniform pressure Pa and its viscosity is 

negligible compared with the liquid viscosity.
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Assumption (i) results in the cross-section o f the flow, shown in Figure 2.6 (b), having 

a rectangular shape, whereas (ii) is equivalent to assuming a closed liquid domain. In 

Chapter 1 it was noted that meniscii, including the effects of surface tension, cannot be 

modelled by purely analytical means. However with assumption (iii), Cañedo and Den

son made the problem tractable by imposing a simple meniscus shape. Unfortunately 

by doing so, it is no longer possible to satisfy all (three) -  see Chapter 4 -  free surface 

boundary conditions. For a steady flow, two of these conditions stipulate that both the 

normal and tangential stresses must balance. In their model, Cañedo and Denson chose 

to balance the shear, i.e. tangential, stresses at the planar interface and accept the fact 

that the normal stresses are unbalanced. Of course in practice the interface is curved 

and these normal stresses are balanced by surface tension stresses due to this curvature 

(see §§1.2.2). This condition may also be expressed in terms of the streamfunction <Cr.

(c) Balance of Shear Stress at a Planar Liquid-Gas Interface

If n, t are unit vectors normal and tangential to the liquid-gas interface respectively 

(see Figure 2.7), then in the general situation the equation expressing the equilibrium 

of this interface (Batchelor [1985] p 69) is

S .n  =  E„.n + -n (2.12)— 1 Z?=  J^ cu rv

where £ , Es are the stress tensors of the liquid and gas respectively, T  is the surface 

tension of the liquid, and RCUrv the radius o f curvature o f the liquid-gas interface. For 

a Newtonian liquid the stress tensor is given by

£ y  =  -PSij +  T]

where ¿y is the Kronecker delta symbol

( m  a u A
{dXj *  dXij (2.13)

Sij =  -
1 if i= j

0 otherwise
(2.14)

In Canedo and Denson’s model, the liquid-gas interface is planar with n =  (0,1) and 

t =  (1 ,0 ). It can be shown that balancing shear stresses there yields
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where the subscript g refers to the gas. However by assumption (iv) r)g/rj <C 1, so 

equation (2.15) reduces to a ‘zero-shear stress’ condition, namely

0U_ dV 
ÔY +  ÔX

=  0 at Y  =  0 (2.16)

Using relations (2.7), this may be written in terms o f the streamfunction, giving

02$  d2V 
ÔY2 ÔX2 at Y  =  0 (2.17)

Since the liquid domain is closed (assumption (ii)), $  is constant on the liquid bound

aries so d'S/dX =  d2i$/OX2 =  0 at Y  =  0. Therefore this zero shear stress condition 

may be rewritten as
d2V 
ÔY2

0 at Y  =  0 (2.18)

All the remaining boundary conditions are of the form (a), (b) or (c) described above. 

For the purposes of the analysis it is convenient to scale lengths by D , liquid velocities 

by U and the streamfunction by UD. In this case the aspect ratio A* =  L/D is 

also the dimensionless cavity width. This non-dimensionalisation, coupled with the 

creeping flow and geometry assumptions described above, enables the slow flow in an 

open, driven cavity to be reformulated as the dimensionless boundary value problem 

shown in Figure 2.8. Once again, for convenience the streamfunction is set equal to 

zero on the boundaries.

Canedo and Denson [1989] solved this problem numerically using a F.D. scheme 

and have presented an analytical solution only valid for infinitely deep cavities o f finite 

width. It is, however, possible to obtain a semi-analytical solution valid for all values 

of aspect ratio by using a truncated biharmonic series similar to that described in §2.3 

for the lid-driven cavity flow. Postulate a solution of the form

0  = f v  ( c nM * - A">
n = —oo

+  Dne~PnX\
} v l

(2.19)

where (CntD „ ) are complex coefficients, are odd Papkovich-Fadle eigenfunctions, 

and pn are complex eigenvalues chosen to satisfy the conditions at the bottom lid and 

the planar liquid-gas interface. The coefficients are obtained by using a modified form 

of Joseph and Sturges’ truncation technique, the main points o f which are summarized
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in Appendix A. As in §2.3, it is found that truncating the biharmonic series (2.19) after 

20 terms gives satisfactory convergence to the boundary conditions on the side walls — 

see Table 2.2 for analytical results for a square cavity with A* =  1. As in the lid-driven 

cavity flow case, the no-slip conditions on the moving wall are inapplicable very close 

to the cavity corners because this would lead to mathematical singularities there -  see 

Appendix B.

Streamlines obtained from a semi-analytical solution of this problem, truncated after 

20 terms, are shown in Figure 2.9 (a); they agree well with those obtained numerically by 

the streamfunction-vorticity F.E. technique (Figure 2.9 (b )), and Canedo and Denson 

[1989] (Figure 2.9 (c)). As in §2.3, the corner eddies may be resolved by taking only 

20 terms in the series (2.19). The two F.E. grids used in the streamfunction-vorticity 

solutions of this problem are shown in Figure 2.10: grid (a) consists o f 144 elements and 

329 nodes, whereas grid (b) has 216 elements and 481 nodes. Both grids are refined at 

the right hand side corners in order to alleviate inaccuracies due to corner singularities 

there. Once again it is found that grid (a) is sufficiently refined for this application. 

The F.E. equations (B.20), (B.21) are solved by the same banded matrix solver as 

was used in §2.3. Solutions obtained using grids (a) and (b) had execution times of 

approximately 70 and 110 c.p.u. seconds respectively.

The semi-analytical solution (2.19) has many advantages over numerical solutions 

to this problem: in addition to the obvious ones such as convenience, cost-effectiveness 

and an ability to resolve corner eddies, it is possible to calculate the (unbalanced) 

normal stresses at y =  0. This is useful because one can then, in principle, postu

late a small perturbation to the liquid-gas interface from the assumed, planar shape 

(which corresponds to the hypothetical case in which capillary number Ca =  rjU/T is 

zero) to one with small disturbances from a planar shape (corresponding to a small, 

finite Ca). This could be achieved by balancing the normal stresses in the liquid by sur

face tension stresses due to interface curvature. However this point is not pursued here.
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2.5 The Zero Flux Model o f Meniscus Roll Coating

2.5.1 Introduction

In this section a mathematical model for the flow of a Newtonian, incompressible liquid 

in a meniscus roll coating bead is developed. In order to make the problem tractable 

to analysis, a number of simplifying assumptions are made. The value of considering 

the ‘cavity-driven’ flows described above will soon become apparent since the model 

of meniscus roll coating developed here, and termed the ‘Zero Flux Model’ , is strongly 

influenced by them.

In an initial survey of meniscus roll coating there are many interesting observations 

to be made. The first is that, under normal operating conditions, the flow in the bead 

does achieve a two-dimensional, steady state (Malone [1992]). Now in fully-flooded 

roll coating the liquid inertia terms in the governing equations (equations (2.1), (2.2)) 

are rarely important compared to the viscous and pressure terms (see e.g. Savage 

[1982], Coyle et al [1986]). In §§1.3.3 we noted that meniscus roll coating is operated at 

lower speeds and with liquids of lower viscosity than in the fully-flooded case. Although 

these lower liquid viscosities tend to increase the relative importance of the liquid inertia 

terms in meniscus roll coating, the lower roller speeds mean that the Reynolds numbers 

Re =  pUL/r] (where U, L are characteristic velocity and length scales respectively), 

measuring the significance o f the inertia terms in the flow, are o f similar magnitudes 

to those encountered in the fully-flooded case (Malone [1992]). Consequently it should 

also be valid to assume that liquid inertia effects are negligible in meniscus roll coating. 

For this reason the creeping flow approximation used in §2.3, 2.4 is also employed in 

the Zero Flux Model.

Another important feature of meniscus roll coating is that the dimensionless flux A, 

defined in §2.1, is small compared to a typical fully-flooded value where 1.3 <  A < 1.4. 

A key assumption of the Zero Flux model therefore, which explains the origin of its 

name, is to neglect the flux through the bead; this is equivalent to assuming a closed 

liquid domain as in the two previous problems. In §1.3 we saw that other important 

factors complicating analyses o f meniscus roll coating are: (i) the existence of two



Chapter 2: The Zero Flux Model o f  Meniscus Roll Coating 52

meniscii, one on either side o f the bead, and the shape of the rollers. These features 

are modelled as in §2.4, i.e. the meniscii are represented as planar interfaces on which 

a condition of zero shear stress is imposed, and the rollers as flat lids.

These assumptions enable the flow to be modelled as shown in Figure 2.11: the 

liquid bead is rectangular and the flow is generated by the motion of the lids. The 

analysis is simplified by introducing the following dimensionless quantities

»  =  U/V2 , x =  X/(L/2) , y =  Y/(L/2)

4> =  9/(V2L/2) , 5  =  Vi/V2 , H * =  2H0/(L/2)

( 2.20)

(2.21)

where L is the bead width, V2 the bottom lid velocity, S the velocity ratio of the 

lids and H * the dimensionless cavity depth (2Hq Is the separation of the lids). This 

non-dimensionalisation, coupled with the creeping flow assumption, enables the Zero 

Flux Model and associated boundary conditions to be reformulated as the boundary 

value problem shown in Figure 2.12. Note that since the liquid-gas interfaces are now 

vertical planes with n =  (± 1 ,0 ), t =  (0, qFl)» the zero shear stress conditions are 

modified, giving
d2ij) 
dx2

=  0 at x =  ±1 (2.22)

in contrast to expression (2.18).

It is found that this boundary value problem is much simpler than those in §2.3, 

§2.4 since it can be solved using the ‘natural’ eigenfunctions of the biharmonic equation, 

namely

^  =  E  { ( y - J r ) ( ^ n e A" itf" " ' ) +  J?n«“ A" w) +  i?„(e ’ An,' - - e A" (w- 3,ar*))}co s(A rl* )
n—l

(2.23)

where An are eigenvalues and (An, B n, D n) are constant coefficients to be determined 

from the boundary conditions. In fact the form of this solution is the same as that used 

by Harper and Wake [1983] to model the flow in the earth’s mantle. The conditions on 

the side walls may be satisfied if  cos A„ =  0 V An, giving

A„ =  ^  jt for n =  1 ,2 ,... (2.24)
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Note that these eigenvalues, and consequently the coefficients also, are real in contrast 

to those given in Appendix A. The unknown coefficients are determined by satisfying 

the boundary conditions on the lids and it may be shown that these conditions reduce 

the search to a standard Fourier expansion problem. Of course, it is only possible to 

include a finite number of terms in the series (2.23) in practice, so it is important to 

determine the number o f terms which need to be taken to ensure that the series has 

converged satisfactorily. Since expression (2.23) is an even function of x, the conver

gence characteristics may be investigated by considering streamfunction values in the 

right half of the bead only. Table 2.3 shows the values o f the streamfunction calculated 

from (2.23) for the flow in a liquid bead with H * =  0.25 and 5  =  1 and 2 by truncating 

the series after (i) 20 and (ii) 50 terms. These values agree to the third decimal place 

and the streamfunctions satisfy the conditions ^ =  Oon the upper and lower lids to six 

decimal places. Of further interest is the convergence of the analytical expression for 

the horizontal liquid velocity (obtained from the streamfunction (2.23) by the relation 

u =  dip/dy) to velocity conditions on the moving lids. Table 2.4 shows horizontal ve

locities on the lids for flows with (a) H* =  0.25, 5  =  1, (b) E * =  0.25, 5  =  2 obtained 

by truncating the series for u after (i) 20, (ii) 50 terms. These results show that by 

taking only 20 terms of the biharmonic series, the convergence to the velocity boundary 

conditions is satisfactory. The agreement improves as more terms are taken; this is to 

be expected because as noted earlier, the convergence to the boundary conditions will 

have the same properties as the convergence of a Fourier series on an interval. In fact, 

in all cases studied it was found to be sufficient to take only 20 terms of the biharmonic 

series (2.23) in order to attain satisfactory convergence to the lid velocity conditions 

In §§1.2.4 we saw that in meniscus roll coating there is one dynamic wetting line 

where the inlet meniscus meets the web/upper roller (see Figure 1.12). However in 

the zero flux model, there are dynamic wetting lines at all four corners o f the liquid 

bead. At each of these corners, the form of the solution (2.23) ensures that dip/dy =  0 

there, i.e. zero liquid velocity; this means that a condition of perfect slip between solid 

and liquid at these corners is implicit in the model. This feature o f the model, which 

is important in any numerical solution o f the boundary value problem, is discussed in
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Appendix B.

2.5.2 Predictions of the Zero Flux Model

(i) Streamline Patterns

In a liquid flow, curves on which the streamfunction is constant are known as ‘stream

lines’. Since they trace out the actual paths of liquid particles in a steady flow, stream

line plots provide a useful means of representing a flow field. Indeed one o f the major 

objectives of the zero flux model is to predict the streamline patterns that arise during 

mensicus roll coating.

In Figure 2.13 streamlines obtained from (i) an analytical solution (expression (2.23) 

truncated after 20 terms), and (ii) a numerical (streamfunction-vorticity F.E.) solution 

of the boundary value problem shown in Figure 2.12, are presented for the 3 cases in 

which H* =  0.5 and 5=1 , 2 and -1. Numerical solutions were obtained using grids (a) 

(160 elements, 369 nodes) and (b) (232 elements, 521 nodes) shown in Figure 2.14. Both 

grids are refined at the four cavity corners in order to alleviate problems caused by the 

dynamic wetting lines which exist there in the zero flux model. The numerical results 

obtained using either grid were in excellent agreement with the analytical solution -  

those illustrated in Figure 2.13 employed grid (a) as the computational mesh. As before 

the F.E. equations (B.20), (B.21) are solved by a banded-matrix solver from the NAg 

F.E. library, solutions obtained using grids (a) and (b) taking approximately 80 and 

120 c.p.u. seconds respectively.

In the unit velocity ratio case (5  =  1), the predicted flow consists o f a double vortex 

structure in which the eddies are o f equal size and separated by a dividing streamline. 

Note that the existence o f this streamline separating flow in the upper and lower regions 

of the bead is an inevitable consequence of imposing a condition of zero net flux across 

the bead. When 5  is increased to 2, the double vortex vortex structure changes: the 

upper vortex is now twice the size o f the lower one, although they are still separated 

by a dividing streamline. For the reverse case with 5  =  —1, i.e. lids moving with equal 

speeds but in opposite directions, the double vortex structure is replaced by a single 

vortex without a dividing streamline.
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These interesting streamline predictions can be compared to Malone’s flow visu

alisations of meniscus roll coating in similar situations -  see Figure 2.15. In Figure 

2.15 (a) Malone injected blue dye into the inlet film of a forward meniscus roll coater 

with 5  =  1. As noted in §§1.2.2, the regions which are relatively clear indicate the 

presence of recirculations in the flow. Hence the prediction of two large recirculations 

in the forward case is borne out in practice. Since the dye is injected into the inlet 

film before it reaches the bead, the darker liquid region indicates the path taken by 

the liquid which originated in the inlet film. Note that there cannot be a dividing 

streamline in reality, as predicted by the zero flux model, since there must be a net flux 

across the bead in the forward case. Malone’s experiments reveal that the liquid in the 

inlet film splits into two parts. The lower part flows straight out of the bead in a layer 

attached to the lower roller. The path of liquid in the upper part is, however, far more 

complicated. This liquid moves in an ‘S’-shaped motion between the two large eddies 

and eventually flows out attached to the upper roller. Although it is difficult to get 

a complete appreciation of this complex motion with Figure 2.15 (a), the presence of 

dark liquid between the eddies indicates the ‘snaking’ o f liquid between them.

In Figure 2.15 (b) the velocity ratio o f  the rollers has been increased to 2. Again 

the existence o f two large eddies is clearly demonstrated, with the liquid coating the 

upper roller moving in an ‘S’-shape between them. The larger eddy is that associated 

with the upper (faster moving) roller. This is also in qualitative agreement with the 

predictions of Figure 2.13 (b) with 5  =  2.0. Finally, Figure 2.15 (c) presents Malone’s 

experimental flow visualisation for a reverse meniscus roll coater with S =  —1.0. As 

in the corresponding theoretical prediction, the flow is seen to be essentially that of a 

single eddy. In his thesis Malone [1992] presents far more detailed flow visualisations 

of meniscus roll coating than those reported here.

The effect o f liquid bead aspect ratio H* on the streamline patterns predicted by 

the zero flux model with 5= 1 , 2, -1 is investigated in Figure 2.16. Since the agreement 

between all analytical and numerical solutions is excellent, only analytical solutions 

with (2.23) truncated after 20 terms are presented. The predicted streamline patterns 

are qualitatively unchanged for aspect ratios in the range 1.0 < H* <  4.0.
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(ii) Liquid Velocities in the Bead

We have already noted that liquid velocities in the bead can be predicted from the 

streamfunction (2.23) by using the fact that u =  dty/dy, v =  -dip/dx] Table 2.5 

presents theoretical u and v values for a bead with H* =  0.5 and 5  =  1. Within 

each box, the upper and lower results have been obtained by truncating the relevant 

series after 50 and 20 terms respectively. They are in very good agreement, which 

suggests that it is sufficient to take only 20 terms in the u and v series in order to 

obtain predictions for the liquid velocities in the bead. Moreover they show that the 

flow in the central ‘ core’ is essentially one-dimensional, i.e. horizontal, and uniform. In 

Table 2.6, horizontal components of liquid velocity are obtained for flows with H * =  0.5 

and 5=2 , -1; again the flow in the core is uniform in both cases. Finally, Table 2.7 

presents horizontal components of liquid velocity for flows with 5  =  1 and H*= 0.1, 

1.0. These results predict that the flow in the core is also uniform for cavities of 

dimensionless depth in the range 0.1 <  H * <  1.0. The prediction that the flow in the 

bead core is uniform is extremely important and will be exploited in Chapter 3 during 

the development of a simple model for the core flow in the case of a small flux passing 

through the bead.

(iii) Pressure Gradient/ Pressure Profiles in the Bead

In the results o f the Zero Flux Model presented so far, attention has been restricted 

to consideration of streamline patterns and liquid velocities. However, in roll coating 

the horizontal pressure gradient is also o f fundamental importance as it is this gradient 

which provides the mechanism driving the flow. In §1.2 we saw that a typical pressure 

profile in fully-flooded roll coating has both a pressure maximum and a minimum -  see 

Figure 1.10. It is now possible to obtain pressure gradient /pressure profile predictions 

in meniscus roll coating by using the analytical solution (2.23) o f the zero flux model. 

If we define the dimensionless pressure p =  PL/2tjV2 where P  is the physical pressure 

and L, Vj have been defined earlier then, under the creeping flow assumption, the 

dimensional horizontal pressure gradient dp/dx is given by the Stokes’ equation:

dp
fa

=  V 2 u = a3y>
dy3 ^  dx2dy

(2.25)
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where u is the horizontal component of liquid velocity and ip is the streamfunction. 

Substituting (2.23) into (2.25) yields

I f  =  2 E  +  B ne - X” v) cos(Ani )  (2.26)
n = l

for flow governed by the assumptions of the zero flux model. Fortunately the coefficients 

(A n, B n) and the eigenvalues A„ have been defined above so the expression (2.26) may 

be conveniently calculated. Table 2.8 shows the values of dp/dx calculated from the 

zero flux model for a liquid bead with H * =  0.5 and 5 =  1 by taking either 20 

or 50 terms in the pressure gradient expression (2.26). The agreement between the 

predictions obtained using 20 and 50 terms in the series is reasonably good, suggesting 

that sufficiently accurate values of dp/dx may be obtained by truncating (2.26) after 20 

terms. These predictions are very interesting since they suggest that dp/dx is uniform 

in the bead core.

Table 2.9 presents values of dp/dx obtained by truncating (2.26) after 20 terms for 

the cases o f H* =  0.5 and 5  =0.5,1.5, 2.0 and -1.0. In all cases dp/dx is uniform in the 

bead core; in fact there is a discernible pattern to the values of the uniform pressure 

gradient since for 5=0.5, 1.0, 1.5, 2.0 and -1.0, dp/dx is equal to 36.0, 48.0, 60.0, 72.0 

and 0.0 respectively -  these values are proportional to the value of (1 +  5 ) where 5  is 

the velocity ratio o f the lids. There is, however, another parameter on which dp/dx 

depends. Tables 2.10 gives predicted values of dp/dx (with (2.26) truncated after 20 

terms) for flows with 5= 1  in which H * assumes values equal to 0.1, 0.2, 0.8 and 1.0. 

Once again dp/dx is uniform in the bead core in all cases, taking values equal to 1200, 

300,18.75 and 12 for H*=  0.1, 0.2, 0.8 and 1.0 respectively. In this case the pattern is 

that these values are proportional to l/H*2. Combining these two observations about 

the predicted values o f dp/dx, suggests that the magnitude of the horizontal pressure 

gradient in the bead core predicted by the zero flux model is such that

(1 + 5)
dx 1y**

This finding is also of crucial importance for the development of the small flux model 

in the next chapter.
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Expression (2.26) for the horizontal pressure gradient may be readily integrated 

with respect to x to give

OO
p =  2 An ( AneXn(y~H  ̂ sin(A„x) +  constant (2.28)

n = l

Unfortunately, the value of this constant of integration cannot be determined by this 

simple analysis because it neglects the curvature of the meniscii -  see Chapter 5 for a 

full explanation o f this point. However it is still possible to show the predicted shape of 

the pressure profiles in meniscus roll coating since this is unaffected by the value of this 

constant. In Figure 2.17 dimensionless pressures on the bead centreline, i.e. equidistant 

from the upper and lower lids, are obtained by truncating (2.28) after 20 terms. They 

are plotted against horizontal position in the bead or flows with (a) H*=0.5 for 5=1 , 

2, 3; (b) 5=1  with iT*=0.25, 1.0 and 2.0. The indeterminate constant of integration 

is set to zero for convenience. As is to be expected from the above observations that 

dp/dx is uniform in the bead core, these pressure profiles are linear in all cases. They 

do, however, lose their linearity as the liquid boundaries are approached -  this is not 

surprising since the assumptions of the zero flux model are certainly not valid close to 

the liquid boundaries.

The prediction o f a linear pressure profile in the central core of a meniscus roll 

coating bead stands in marked contrast to those observed in the fully-flooded case -  

see Figure 1.10. Subsequent experimental and numerical investigations (in Chapter 5) 

confirm the validity o f this prediction for ultra-starved flow. The information given in 

this chapter will now be used to refine the Zero Flux Model to include a small flux A.
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Figure 2.1: The Central ‘Core’ of a Forward Meniscus Roll Coater
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Figure 2.2: Flow in a Lid-Driven Cavity: (a) a two-dimensional cross-section, (b)

dimensionless boundary value problem for the creeping flow case
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Figure 2.3: F.E. Grids used in Numerical Solution of Flow in a Lid-Driven Cavity: (a) 

144 elements, 329 nodes; (b) 216 elements, 481 nodes; (c) 144 elements, 329 nodes
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CORNER RECIRCULATIONS , SEMI-ANALYTICAL PREDICTIONS

Figure 2.4: Streamlines of Creeping Flow in a Lid-Driven Cavity with A* — 1.0: (a) 

Semi-Analytical (20 terms in series), (b) numerical (F.E.), (c) Pan and Acrivos [1967]
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CORNER RECIRCULATING FLOW - SEMI-ANALYTICAL SOLUTION

Figure 2.5: Streamlines o f Creeping Flow in a Lid-Driven Cavity with A* =  5.0: (a) 

Semi-Analytical (20 terms in series), (b) Pan and Acrivos [1967]
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Figure 2.6: Flow in an Open, Driven Cavity (Canedo and Denson [1989]): (a) the 

cavity-cylinder system showing the principal geometric parameters, (b) the simplified 

two-dimensional flow domain
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Figure 2.7: Normal and Tangential Vectors at a Liquid-Gas Interface 

(0,0) t = 0  =  O (A",0)
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Figure 2.8: Canedo and Denson’s [1989] Dimensionless Boundary Value Problem for 

Creeping Flow in an Open, Driven Cavity
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(a)

(b)

CORNER RECIRCULATIONS . SEMI-ANALYTICAL PREDICTIONS

Figure 2.9: Streamlines of Creeping Flow in an Open,Driven Cavity with A* =  1.0: 

(a) Semi-Analytical (20 terms in series), (b) Numerical (F.E.), (c) Canedo and Denson 

[1989]
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Figure 2.10: F.E. Grids Used in Numerical Solution o f Creeping Flow in an Open, 

Driven Cavity: (a) 144 elements, 329 nodes, (b) 216 elements, 481 nodes
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Figure 2.11: Tlie Zero Flux Model of Meniscus Roll Coating
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Figure 2.12: Dimensionless Boundary Value Problem from the Zero Flux Model of 

Meniscus Roll Coating
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Figure 2.13: Streamlines From the Zero Flux Model with H* =  0.5 and (a) 5  =  1, (b) 

5  =  2, (c) 5  =  - 1
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Figure 2.14: F.E. Grids used in Numerical Solutions of the Zero Flux Model: (a) 160 

elements, 369 nodes, (b) 232 elements, 521 nodes
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Figure 2.15: Flow Visualisations of Meniscus Roll Coating (Malone [1992]): (a) 5  = 1,

(b) 5  = 2, (c) 5  =  - 1
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Figure 2.16: Streamlines From Analytical Solution o f the Zero Flux Model -  Depen

dence on Aspect Ratio for flows with 5  =  1 ,2  and -1: (a) H * =  1.0, (b) H * =  2.0, (c) 

H* =  4.0
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CASE (a) -  HsO. 5 CASE (b) -  S«1.0

*
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ft

Figure 2.17: Dimensionless Pressure Profiles on the Horizontal Bead Centreline -  De

pendence on Velodty/Aspect ratio (Constant of Integration set to Zero)
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X V>(x , 10) V>(x , 0) dip/dy(x , 10) dil)/dy(x , 0)
0.00 + 1.704 x  10"4 - 1.100 x  10“ ie 1.081 3.807 x  10~9
0.05 - 1.656 X  10"4 + 1.058 X  10~ ie 0.920 3.787 x  10"9
0.10 + 1.512 X 10~4 - 9.289 X  10-17 1.076 3.725 x  10~9
0.15 - 1.278 X  10"4 + 7.221 X  10"17 0.932 3.625 X  10"9
0.20 + 9.607 X  10-£l - 4.435 X  10-17 1.058 3.486 X  10~9
0.25 - 5.736 X  10"5 + 1.101 X lO - 1^ 0.956 3.312 X  lO " 9
0.30 + 1.335 X 10"5 + 2.622 X  10"17 1.028 3.106 X  10“ 9
0.35 + 3.366 X 10"5 - 6.438 X  10"17 0.991 2.872 X  lO " 9
0.40 - 8.068 X  10- i + 1.004 X  10"1<5 0.988 2.614 X  lO ' 9
0.45 +  1.239 X  10"4 + 1.297 X  lO - 1^ 1.035 2.339 X  10"9
0.50 - 1.587 X  10"4 + 1.473 X  10~ ia 0.941 2.051 x  10"9
0.55 + 1.795 X 10 '4 - 1.466 X  10“ lfi 1.081 1.756 X  10"9
0.60 - 1.812 x  10~4 + 1.212 X  10“ 16 0.899 1.462 X  10~9
0.65 + 1.545 X  10~4 - 6.481 X  10"17 1.111 1.176 x  lO ' 9
0.70 - 9.799 x  10"5 - 2.504 X  10"17 0.893 9.046 x  10"9
0.75 + 1.073 X 10" * + 1.422 X  10"16 1.079 6.555 X  10~10
0.80 + 9.631 x  10"5 + 3.083 x  10“ 15 0.896 2.544 X  lO “ 10
0.85 - 1.910 x  10"4 + 3.083 X  10" 16~ 0.897 2.544 X  lO “ 10
0.90 + 2.082 X 10"4 - 1.580 x  10~16 1.264 1.170 x  10"10
0.95 - 8.245 X  10~5 - 2.615 X  10_ lt l 0.673 3.059 X  10“ 11
1.00 0.000 0.000 0.000 0.000

Table 2.1: Convergence of the Semi-Analytical Solution For Creeping Flow in a 

Lid-Driven Cavity to the Boundary Conditions -  A* =  5.0 and 20 terms in series
y V>(0, y ) V’ i i  , y) dip/dx(0, y) dtp/dx(l , y)

0.00 0.000 0.000 0.000 0.000
- 0.05 - 5.327 x  10"9 - 4.645 X  10“ 5 + 4.725 X  10"8 1.183
- 0.10 + 8.632 X  10- * + 8.764 X  10“ 6 - 8.734 X  10~8 0.894
- 0.15 - 1.372 x  10-8 - 1.187 x  10“ 4 - 1.092 X  10~7 1.080
- 0.20 +  1.266 X  10~8 +  1.353 X  1 0 '4 + 2.393 x  10~7 0.930
- 0.25 - 1.587 X  10- fc - 1.346 X  10“ 4 - 9.680 x  10"7 1.068
- 0.30 + 9.321 X  10~9 + 1.148 X  10-4 + 1.395 x  10~6 0.930
- 0.35 - 9.649 X  10-* - 7.685 X  10"5 - 2.799 X  10~6 1.076
- 0.40 - 8.120 x  10~ 1U + 2.266 x  10"5 + 3.727 x  10~6 0.917
- 0.45 + 2.954 X 10_tt + 4.138 X  10"5 - 5.720 x  10"6 1.091
- 0.50 - 1.294 X  10-*5 - 1.076 X  10~4 + 7.278 X  10~6 0.902
- 0.55 + 1.398 X  10"8 + 1.639 x  10“ 4 - 9.724 x  10~6 1.102
- 0.60 - 1.714 x  10-** - 1.975 x  10~4 + 1.167 x  lO " 5 0.900
- 0.65 + 1.065 x  lO " * + 1.931 x  10-4 — 1.428 X  10-5 1.089
- 0.70 - 1.013 x  10" y - 1.398 X  10"4 +  1.593 X  10~5 0.938
- 0.75 - 1.594 X  10~8 + 3.424 X  10"5 - 1.734 x  10"5 1.013
- 0.80 + 3.247 x  10~8 + 1.061 X  10“ 4 + 1.558 X  10~5 1.064
- 0.85 - 3.777 X  10“ 1* - 2.290 x  10"4 - 7.902 x  10-6 0.829
- 0.90 + 1.299 X  10-8 + 2.350 X  10~4 - 1.914 X  10~5 1.281
- 0.95 + 4.630 x  10~8 - 4.719 X  10"5 + 1.012 x  10“ 4 0.783
- 1.00 0.000 0.000 0.000 0.000

Table 2.2: Convergence of the Semi-Analytical Solution For Creeping Flow in an Open, 

Driven Cavity to the Boundary Conditions -  A* — 1.0 and 20 terms in the series
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(a) H m =  0.25, 5  = 1

(i) series truncated after 20 terms

X = 0.0 0.25 0.5 0.75 1.0
y =  0.25 0.000000 0.000000 0.000000 0.000000 0.000000

y = 0.1875 -0.023148 -0.024358 -0.023410 -0.023495 0.000000
y =  0.125 0.000000 0.000000 0.000000 0.000000 0.000000

y =  0.0625 0.023148 0.024358 0.023410 0.023495 0.000000ooII 0.000000 0.000000 0.000000 0.000000 0.000000

(ii) series truncated after 50 terms

X = 0.0 0.25 0.5 0.75 1.0
y =  0.25 0.000000 0.000000 0.000000 0.000000 0.000000

y =  0.1875 -0.023437 -0.023438 -0.023438 -0.023449 0.000000
y = 0.125 0.000000 0.000000 0.000000 0.000000 0.000000

y =  0.0625 0.023437 0.023438 0.023438 0.023449 0.000000

II o o 0.000000 0.000000 0.000000 0.000000 0.000000

(b) H m =  0.25, 5 =  2

(i) series truncated after 20 terms

X = 0.0 0.25 0.5 0.75 1.0
y = 0.25 0.000000 0.000000 0.000000 0.000000 0.000000

y =  0.1875 -0.058594 -0.058594 -0.058596 -0.058740 0.000000
y =  0.125 -0.031250 -0.031250 -0.031254 -0.031452 0.000000

y = 0.0625 0.011719 0.011719 0.011717 0.011616 0.000000

<ci II O o 0.000000 0.000000 0.000000 0.000000 0.000000

(ii) series truncated after 50 terms

X = 0.0 0.25 0.5 0.75 1.0
y =  0.25 0.000000 0.000000 0.000000 0.000000 0.000000

y =  0.1875 -0.058555 -0.058636 -0.058542 -0.058834 0.000000
y =  0.125 -0.031249 -0.031251 -0.031253 -0.031453 0.000000

y =  0.0625 0.011699 0.011740 0.011690 0.011653 0.000000ooII5>s 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2.3: The Convergence o f the Analytical Solution for the Zero Flux Model
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(a) H * =  0.25, 5  =  1

(i) series truncatec after 20 terms
x — 0.0 0.2 0.4 0.6 0.8 1.0

u(x, H*) 0.984 0.983 0.980 0.973 0.949 0.000
u(x, 0) 0.984 0.983 0.980 0.973 0.949 0.000

(ii) series truncated after 50 terms
x = 0.0 0.2 0.4 0.6 0.8 1.0

u(x, H*) 0.993 0.993 0.992 0.989 0.979 0.000o'N'it 0.993 0.993 0.992 0.989 0.979 0.000

(b) E m =  0.25, 5  =  2

(i) series truncated after 20 terms
x = 0.0 0.2 0.4 0.6 0.8 1.0

u (x ,H *) 1.968 1.966 1.961 1.946 1.898 0.000
u(x,0) 0.984 0.983 0.980 0.973 0.949 0.000

(ii) series truncated after 50 terms
x = 0.0 0.2 0.4 0.6 0.8 1.0

u (x ,H *) 1.987 1.987 1.984 1.980 1.960 0.000
u(x,0) 0.993 0.993 0.992 0.989 0.979 0.000

Table 2.4: Horizontal Components of Liquid Velocity Predicted by the Zero Flux Model 

-  Convergence to the Lid Velocity Conditions

(a) Horizontal Components (50 terms upper, 20 terms lower)

x = 0.0 0.2 0.4 0.6 0.8
y =  0.5 0.99363

0.98409
0.99331
0.98328

0.99213
0.98035

0.98917
0.97300

0.97944
0.94910

y =  0.4 0.04000
0.04016

0.04000
0.04017

0.04006
0.04025

0.04008
0.04033

0.01634
0.01675

y =  0.3 -0.44000
-0.44000

-0.44000
-0.44000

-0.44008
-0.44008

-0.44028
-0.44028

-0.41248
-0.41248oII -0.44000

-0.44000
-0.44000
-0.44000

-0.44008
-0.44008

-0.44028
-0.44028

-0.41248
-0.41248

y =  0.1 0.04000
0.04016

0.04000
0.04017

0.04006
0.04025

0.04008
0.04033

0.01634
0.01675

«s II o d 0.99363
0.98409

0.99331
0.98328

0.99213
0.98035

0.98917
0.97300

0.97944
0.94910

Table 2.5: Liquid Velocity Predictions in the Central Core of Meniscus Roll Coating 

Bead with E * = 0.5, 5  =  1
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(b) Vertical Components (50 terms upper, 20 terms lower)

X  = 0.0 0.2 0.4 0.6 0.8
y =  0.5 0.00000

0.00000
0.00000
0.00000

0.00000
0.00000

0.00000
0.00000

0.00000
0.00000

y =  0.4 0.00000
0.00000

0.00000
-0.00001

-0.00008
-0.00011

0.00014
0.00008

0.03698
0.03675

y =  0.3 0.00000
0.00000

0.00000
0.00000

-0.00007
-0.00007

0.00042
0.00042

0.03179
0.03179

y =  0.2 0.00000
0.00000

0.00000
0.00000

0.00007
0.00007

-0.00042
-0.00042

-0.03179
-0.03179

HdIIs» 0.00000
0.00000

0.00000
0.00001

0.00008
0.00011

-0.00014
-0.00008

-0.03698
-0.03675

y =  o.o 0.00000
0.00000

0.00000
0.00000

0.00000
0.00000

0.00000
0.00000

0.00000
0.00000

Table 2.5 (continued)

(a) 5 = 2.0

x = 0.0 0.2 - 0.4 0.6 0.8
2/= 0.5 1.96819 1.96656 1.96070 1.94601 1.89817
y =  0.4 0.36041 0.36088 0.36271 0.35932 0.25043
y =  0.3 -0.55993 -0.55969 -0.55904 -0.56243 -0.55965
y =  0.2 -0.76007 -0.76032 -0.76120 -0.75840 -0.67779
y =  0.1 -0.23995 -0.24039 -0.24195 -0.23832 -0.20019

odIIS>1 0.98409 0.98328 0.98035 0.97300 0.94910

(b) 5  =  -1 .0

x = 0.0 0.2 0.4 0.6 0.8
y =  0.5 -0.98409 -0.98328 -0.98035 -0.97300 -0.94910dII -0.60036 -0.60127 -0.60467 -0.59764 -0.45062
y =  0.3 -0.20015 -0.20063 -0.20216 -0.19596 -0.11814csoII 0.20015 0.20063 0.20216 0.19596 0.11814
y =  o .i 0.60036 0.60127 0.60467 0.59764 0.45062

«s II o o 0.98409 0.98328 0.98035 0.97300 0.94910

Table 2.6: Horizontal Liquid Velocity Predictions in the Central Core o f a Meniscus 

Roll Coating Bead -  Dependence on Velocity Ratio for H* =  0.5
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(a) H* =  0.1

X  = 0.0 0.2 0.4 0.6 0.8
y =  0.10 0.98409 0.98328 0.98035 0.97300 0.94910
y =  0.08 0.04168 0.04176 0.04207 0.04286 0.04552
y =  0.06 -0.43695 -0.43680 -0.43624 -0.43486 -0.43050
y =  0.04 -0.43695 -0.43680 -0.43624 -0.43486 -0.43050
y =  0.02 0.04168 0.04176 0.04207 0.04286 0.04552
y =  0.00 0.98409 0.98328 0.98035 0.97300 0.94910

(b) H* =  1.0

x = 0.0 0.2 0.4 0.6 0.8
y  =  l.o 0.98409 0.98328 0.98035 0.97300 0.94910
y  =  0.8 0.04036 0.04014 0.03704 0.01634 -0.05909
y =  0.6 -0.44050 -0.44036 -0.43710 -0.41249 -0.29742dII -0.44050 -0.44036 -0.43710 -0.41249 -0.29742
y  — 0.2 0.04036 0.04014 0.03704 0.01634 -0.05909
y  =  o.o 0.98409 0.98328 0.98035 0.97300 0.94910

Table 2.7: Horizontal Liquid Velocity Predictions in the Central Core of a Meniscus 

Roll Coating Bead -  Dependence on Dimensionless Depth for 5  =  1

(a) series truncated after 20 terms

x = 0.0 0.2 0.4 0.6 0.8 1.0
y =  0.5 -77.66 -84.13 -107.34 166.45 -368.72 0.00
y  =  0.4 47.78 47.76 47.70 47.45 52.43 0.00
y  — 0.3 48.00 48.00 48.00 48.25 49.42 0.00

y =  0.25 48.00 48.00 48.01 48.30 48.33 0.00
y =  0.2 48.00 48.00 48.00 48.25 49.42 0.00
y  — o .i 47.78 47.76 47.70 47.45 52.43 0.00odII -77.66 -84.13 -107.34 -166.45 -368.72 0.00

(b) series truncated after 50 terms

x — 0.0 0.2 0.4 0.6 0.8 1.0
y =  0.5 -266.16 -282.33 -340.33 -487.44 -978.31 0.00
y =  0.4 48.00 48.00 47.98 47.83 53.08 0.00ndII 48.00 48.00 48.00 48.25 49.42 0.00

y =  0.25 48.00 48.00 48.01 48.30 48.33 0.00dII 48.00 48.00 48.00 48.25 49.42 0.00
y =  0.1 48.00 48.00 47.98 47.83 53.08 0.00qdIIí» -216.16 -282.33 -340.33 -487.44 -978.31 0.00

Table 2.8: The Convergence of Dimensionless Pressure Gradient Predictions in the 

Central Core o f A  Meniscus Roll Coating Bead for H * =  0.5 and 5  =  1
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(a) 5  = 0.5

X = 0 .0 0.2 0.4 0.6 0.8 1 .0

y  =  0.5 - 26.84 - 30.06 - 41.43 - 70.06 - 171.71 0.00
y  =  0.4 35.88 35.90 36.04 36.19 36.60 0.00

COo1!5
» 36.00 36.01 36.07 36.27 35.61 0.00

y  =  0.25 36.00 36.00 36.00 36.26 36.25 0.00
2/ =  0.2 36.00 35.99 35.94 36.10 38.51 0.00
y  =  0.1 35.77 35.73 35.51 34.98 42.04 0.00

odIIs» - 89.65 - 96.14 - 119.58 - 179.61 - 380.78 0.00

(b) 5  = 1.5

x = 0.0 0.2 0.4 0.6 0.8 1.0
y =  0.5 - 128.48 - 138.20 - 173.25 - 262.84 - 564.94 0.00
y  =  0.4 59.65 59.61 59.35 58.70 68.25 0.00
2/ =  0.3 59.99 59.99 59.94 60.23 63.22 0.00

y =  0.25 60.00 60.00 60.01 60.37 60.42 0.00
y  =  0.2 60.00 60.01 60.03 60.40 60.32 0.00
22 =  0.1 59.77 59.78 59.89 59.91 62.83 0.00
y  =  o .o - 65.67 - 72.17 - 95.09 - 153.29 - 355.87 0.00

(c) 5  =  2.0

x = 0.0 0.2 0.4 0.6 0.8 1.0

*3 II O Cn - 49.30 - 192.98 - 239.16 - 359.22 - 761.55 0.00
y =  0.4 71.54 71.46 71.01 69.96 84.08 0.00todIIs» 72.00 71.97 71.87 72.21 77.02 0.00

y =  0.25 72.00 72.00 72.01 72.45 72.50 0.00<NdII 72.00 72.02 72.15 72.55 71.23 0.00
y =  0.1 71.77 71.81 72.68 72.38 73.22 0.00

«2 II O d - 58.69 - 60.81 - 82.86 - 140.13 - 343.42 0.00

(d) 5  =  -1 .0

x = 0.0 0.2 0.4 0.6 0.8 1.0ooII 125.62 132.17 156.30 219.09 418.13 0.00

dIIs» 0.23 0.35 1.07 0.24 - 10.86 0.00todII 0.00 0.05 0.28 0.34 - 5.79 0.00
y =  0.25 0.00 0.00 0.00 0.00 0.00 0.00iSoII3» 0.00 - 0.05 - 0.28 - 0.34 5.79 0.00

y  =  o.i - 0.23 - 0.35 - 1.07 - 0.24 10.86 0.00
y  =  o.o - 125.62 - 132.17 - 156.30 - 219.09 - 418.13 0.00

Table 2.9: Dimensionless Pressure Gradient Predictions in the Central Core of A Menis

cus Roll Coating Bead with H * =  0.5 -  Dependence on Velocity Ratio
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(a) H • =  0.1

X = 0.0 0.2 0.4 0.6 0.8 1.0
y =  0.10 885.8 869.7 811.7 665.5 183.4 0.0
y =  0.08 1186.4 1185.7 1183.2 1176.9 1156.2 0.0
y =  0.06 1199.4 1199.4 1199.2 1199.0 1198.1 0.0
y =  0.05 1199.8 1199.7 1199.7 1199.6 1199.2 0.00
y =  0.04 1199.4 1199.4 1199.2 1199.0 1198.1 0.00
y -  0.02 1186.4 1185.7 1183.2 1176.9 1156.2 0.00
y =  0.00 885.8 896.7 811.7 665.5 183.4 0.00

(b) H m =  0.2

x = 0.0 0.2 0.4 0.6 0.8 1.0
y = 0.20 -14.2 -30.3 -88.3 -234.5 -717.3 0.0
y =  0.16 299.4 299.9 299.3 299.0 297.7 0.0
y =  0.12 300.0 300.0 300.0 300.0 300.3 0.0
y =  0.10 300.0 300.0 300.0 300.0 300.4 0.0
y =  0.08 300.0 300.0 300.0 300.0 300.3 0.0
y =  0.04 299.4 299.9 299.3 299.0 297.7 0.0
y =  0.00 -14.2 -30.3 -88.3 -234.5 -717.3 0.00

(c) H m =  0.8

x = 0.0 0.2 0.4 0.6 0.8 1.0
y =  0.80 -295.4 -311.6 -369.9 -517.8 -1000.6 0.0
y =  0.64 18.74 18.72 18.68 19.28 27.91 0.0
y =  0.48 18.75 18.77 18.89 19.27 17.74 0.0
y =  0.40 18.75 18.78 18.91 19.14 16.43 0.0
y =  0.32 18.75 18.77 18.89 19.27 17.74 0.0
y =  0.16 18.74 18.72 18.68 19.28 27.91 0.0
y =  0.00 -295.4 -311.6 -369.9 -517.9 -1000.6 0.00

(d) E • =  1.0

x  = 0.0 0.2 0.4 0.6 0.8 1.0
y  =  l . o -302.2 -318.5 -377.0 -524.9 -1010.8 0.00
y  =  0.8 11.96 11.95 12.03 13.27 20.61 0.00
y  =  0.6 12.02 12.06 12.22 12.35 10.32 0.00
y  =  0.5 12.03 12.07 12.21 12.08 9.30 0.00
y  =  0.4 12.02 12.06 12.22 12.35 10.32 0.00
y  =  0.2 11.96 11.95 12.03 13.27 20.61 0.00ooII -302.2 -318.5 -377.0 -524.9 -1010.8 0.00

Table 2.10: Dimensionless Pressure Gradient Predictions in the Central Core of A 

Meniscus Roll Coating Bead with 5  =  1 -  Dependence on Aspect Ratio
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Chapter 3

The Small Flux Model of

Meniscus Roll Coating

3.1 Introduction

Mensicus roll coating is characterized by having a much reduced dimensionless flux (as 

defined in §2.1) compared to the fully-flooded situation. In Chapter 2, this observation 

motivated an analysis o f the problem based on the simplest of models -  the Zero Flux 

model. As we have seen this model reveals the key features o f the flow field (vortex 

structure) within the bead as speed ratio and aspect ratio are varied, yet in its present 

form it is unable to predict the film thicknesses produced during the actual coating 

operation. The ultimate goal o f the present chapter is to refine the Zero Flux model in 

order to enable film thickness predictions to be made.

The first step towards this goal is to refine the Zero Flux model to include a small, 

non-zero flux passing through the bead. This is achieved using Richardson’s [1988] 

suggestion, which is supported by the theoretical results given in §§2.5.2, that the flow 

in the central core o f the bead can be modelled as a combination of Poiseuille and 

Couette terms under the assumption of a constant pressure gradient. This proposal 

leads to the development o f a simple model for the flow in the central ‘ core’ of a meniscus 

roll coating bead, i.e. the region sufficiently far away from the curved meniscii, as 

indicated in Figure 2.1. The next stage is to extend the ‘Poiseuille plus Couette’ small

80
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flux model to predict the average film thicknesses produced on upper and lower rollers 

during forward meniscus roll coating.

In §1.2 we saw that there are many film thickness theories for fully-flooded roll 

coating (e.g. those of Savage [1982], Coyle et al [1986]), all o f which attempt to locate 

the ‘dividing streamline’ -  see Figure 1.8 -  which separates the liquid coating the upper 

and lower rollers. More recently, Savage [1992] proposed that the liquid coating the 

upper and lower rollers is divided by a stagnation point; in §3.3 the predictions of this 

‘stagnation-point’ theory are compared with Malone’s [1992] fully-flooded roll coating 

data. However, until now no film thickness theory has been developed for the meniscus 

roll coating situation. Such a film thickness model for forward meniscus roll coating 

(see Figure 1.6 (c)) is now developed which takes account of parameters such as the 

roller speeds, minimum roller separation, and the magnitude of the flux passing through 

the bead. The predictions of this model are validated against experiment.

3.2 Formulation of the Small Flux Model

The results of §§2.5.2 for the Zero Flux Model predict the flow in the central core of 

the bead to be one-dimensional with a constant pressure gradient. These observations 

are now developed further to produce o f a simple model of the core flow for the case of 

a small, non-zero flux.

The flow visualisations in Figure 2.15 (a), (b) demonstrate that the curvature of the 

rollers is small in the region of interest (i.e. the central core of the bead). Hence, for 

convenience, in this chapter we shall describe the theory for the special case in which 

we assume that, in the bead core, the roller separation is equal to the minimum roller 

separation. This is equivalent to modelling the rollers as flat lids, but note that the 

following models can easily be extended to accomodate the effects of a variable roller 

separation, H (X ), (as is the case in practice) by simply replacing the nip width, 2Ho, 

by H (X )  (see later, §§ 4.5.2). The other assumptions of the Zero Flux model (see §2.5) 

are retained with one modification: the assumption of planar liquid-gas interfaces is no 

longer relevant because the model only deals with the flow in the ‘core’ , sufficiently far
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away from the meniscii and lids. It will be seen that the idealised situation of zero flux 

arises as a special case.

In a private communication Richardson [1988] suggested that, even in the case 

o f small, non-zero flux, the pressure gradient would be constant. Using the non- 

dimensionlisation of §2.5 (i.e. equations (2.20), (2.21)), the Stokes equations governing 

this creeping flow reduce to their one-dimensional form:

dp _  d2u dp 
dx dy2 ’ dy (3.1)

Assuming that dp/dx is constant and applying the no-slip boundary conditions on the 

lids, see Figure 3.1, u =  S at y = H*, u =  1 at y =  0 yields

u

Po iseu ille

1 dp
2 dx

Couette--

+ (S -l)-jp  + 1 (3.2)

Expression (3.2) is a combination of Poiseuille and Couette terms. The Poiseuille term, 

which depends on dp/dx, models the flow due to an external pressure gradient. In 

meniscus roll coating this external pressure gradient arises due to the difference in 

curvature of the upstream and downstream meniscii, as shown in Figure 1.6 (c); this 

feature is discussed further in Chapter 5. The Couette term is much easier to interpret: 

it is the flow generated by the motion o f the lids.

In §2.1 the flux through the bead Q was non-dimensionalised by 2VE q where V  

is the average roller speed. For the purposes of this chapter, however, it is convenient 

to define the dimensionless flux A past any station x (which by continuity o f flux is 

constant) by A =  Q/ZViHo, where V2 is the lower roller speed. This yields

A  =  Q =  S” '  ,,(t)ds  =  - E l U l  4.  ( 5 + ! )  ( 3 3 1
2V2Hq H* 12 dx +  2 ( ' }

Equation (3.3) may be rearranged to give

+  < 3 - 4 >

which, when substituted in the velocity profile (3.2), yields

«(») =  5 ^ ( S  +  1 -  2 * ) ( s 2 -  n’t) + ( « - 1 ) 5 3  +  1 (3.5)
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The PoiseuiUe plus Couette model treats the idealised situation of zero flux as a special 

case. Indeed by setting A =  0 in (3.4) and (3.5) we obtain estimates for the pressure 

gradient (dp/dx)o and velocity profile uq in the case of zero flux:

( ° P \  _  6(5+1)
I s l J o  "  (3 6 )

«0 =  -g r ^ S + lH y 1 -  H -y) + + 1 (3.7)

Note that expression (3.6) agrees with the prediction o f the Zero Flux model that the 

horizontal pressure gradient in the core of a meniscus roll coating bead is proportional 

to the value o f (1 +  S)/H*2 (see equation (2.27)). In fact Table 3.1 shows that the 

values of the pressure gradient, dp/dx, given in §§2.5.2 are in exact agreement with 

those predicted by equation (3.6) in the zero flux case. Further evidence for equivalence 

o f the zero and small flux models in the idealised case of zero flux is provided by the 

horizontal velocity profiles shown in Table 3.2. There is exact agreement between those 

obtained (i) by truncating the series for u obtainable from equation (2.23) after 20 

terms, (ii) from the Poiseuille plus Couette profile (3.7).

3.3 The Prediction of Film Thicknesses in Forward Menis

cus Roll Coating

In this section the small flux model is extended to tackle a question of fundamental 

practical significance: how is the inlet liquid film, which is entrained by the viscous 

lifting action of the applicator roller during forward meniscus roll coating, eventually 

distributed between the upper and lower rollers? In particular we develop a model for 

predicting the dimensionless fluxes Ax, A2 o f the films produced on the upper and lower 

rollers respectively when a known, small flux A flows through the bead. Once the fluxes 

Ax, A2 have been determined, they are easily converted to average film thicknesses on 

the rollers for comparison with Malone’s [1992] experimental data. It is not, however, 

the aim of our analysis to predict A, i.e. the flux through the bead under a given set of 

circumstances, as this can be achieved by applying the theory of Tharmalingham and 

Wilkinson [1978] (see §§1.3.3).
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The complex nature of the flow in the bead of a forward meniscus roll coater has al

ready been described (see §§2.5.2 and Figure 2.15): the liquid in the inlet film eventually 

splits into two parts; the upper one ‘snakes’ between the eddies before coating the upper 

roller, while the lower one simply coats the lower roller. Although this ‘flux-splitting’ 

actually occurs near the downstream meniscus where the flow is fully two-dimensional, 

it is still possible to predict Ai and A2 without analysing the flow near the film split 

point. Figure 3.2 illustrates the model for flow in a meniscus roll coating bead devel

oped here. As in the Zero Flux model, it pertains to the creeping flow of a Newtonian, 

incompressible liquid in which the rollers are modelled as flat lids, but it also has the 

additional assumption that the flow across any vertical cross-section (in the bead core) 

is given by the Poiseuille plus Couette profile (3.5). It is important to realise that the 

analysis which follows is only valid in the case in which the the dimensionless flux A 

passing through the bead is so small that terms 0 (A 2) are negligible. As in the actual 

situation, liquid flows into the bead in a thin film (A <  1) which eventually splits into 

upper (shaded) and lower (unshaded) films of dimensionless fluxes (thicknesses) Aj, A2 

( i i , *2) respectively. Note that due to its snaking motion, liquid in the upper film lies 

in three regions of every vertical cross-section of the flow: between (i) the lower (un

shaded) film and lower eddy, (ii) the top of the lower eddy (y = Y£) and the bottom of 

the upper eddy (y =  Y t), and (iii) the top of the upper eddy and the upper lid. Since 

these regions all form part of the same film, then by continuity of flux the magnitudes 

o f the fluxes across each of them must equal Aj. An important consequence of this 

is that it is possible to predict Aj by examining the ‘reverse jet’ between the eddies 

(region (ii)) since the flux in this jet, F je t , equals Aj. Indeed the problem of predicting 

Aj and A2 reduces to that of determining the positions Y£ , Yfi since F jet could then be

obtained by integrating the assumed velocity profile (3.5) between these limits, i.e.

Ai =  F ,»( =  —
J y?  u dV (3.8)- R,

Note also that the flux on the lower roller A2 follows immediately, once Ai has been 

determined, since the total flux A is known and by continuity of flux

A — Aj +  A2 (3.9)
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3.3.1 Determination of Y£

The top o f the bottom eddy, y =  Y£, is located by considering the flux beneath it. 

Figure 3.2 shows that below Y£ there is an inlet film of flux A and a closed eddy, which 

by definition has zero net flux across it. This means that the total flux beneath Y£ 

equals A, or
Jo1  u dy 

ir*
=  A (3.10)

where u is the Poiseuille plus Couette velocity profile (3.5). This condition yields a 

cubic equation for Y£, the relevant solution of which is

-  F  ( ( r h )  -  + 0(A2) (3-n)
The other solutions for Y£ are (i) Y£ =  A corresponding to the top of the inlet film and

(ii) Y£ = H* corresponding to the upper lid.

3.3.2 Determination of Y£

This is far more difficult than the determination of Y£ . In §2.5 we saw that in the case 

of zero net flux, the flow consists of upper and lower eddies separated by a dividing 

streamline (see Figures 2.13 (a), (b)). In this idealised situation the locations Y£ and 

Yg coincide and the reverse jet, which flows between the eddies when A ^  0, degenerates 

into a dividing streamline, y =  Y£ say, where

H*
(1  + S)

(3.12)

This enables (3.11) to be reinterpreted: when a small flux A flows through the bead, 

the top of the lower vortex, y =  Y£(S, A), is displaced downwards by the 0 ( A) amount 

H*S(S +  3)A/(1 +  5 )2. This shows that the problem of determining Y£ is equivalent 

to finding the amount 6(S, A) by which Y£ is displaced from Y£ when a non-zero flux 

A passes through the bead, i.e.

V(XS,A) =  +  i(S , A) (3.13)

Since this theory is neglecting the effects of gravity, the model must satisfy the sym

metric film splitting condition
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(i) Ai (1,A) =  >2( 1 , A) =  A/2 

and in the asymptotic limits

(ii) Aj —► A as 5  —► 00

(iii) A2 —► A as 5  —* 0

Since both Yu and Y£ are displaced from Y* by an 0 (A ) amount, the thickness of the 

reverse jet, YJ — Y£, is also 0 (A ). Hence by a simple order of magnitude argument the 

0 (A ) flux in the reverse jet (which equals Ax by hypothesis) is determined by considering 

only the 0 (1 ) liquid velocity in the jet at the location Y*, U j et say. Now substituting 

(3.12) into the profile (3.5) yields ujet =  —5 /(5  +  1), so equation (3.8) gives

5  (Y¿ -  Y£)
(5  +  1) H *

(3.14)

From (3.11) it can be shown that for a small flux A, condition (i) gives ¿>(1 ,A) =  0 

while conditions (ii) and (iii) yield ¿(5 , A) -♦ 0 as 5  —► 00, 0 respectively. These results 

motivate the key assumption of the film thickness model developed here: postulate that 

8{S, A) =  0 for all 5  and A. Under this hypothesis

Y£(S,X) =  for all 5  and A (3.15)

i.e. when any small Ûux A flows through the bead Y£ remains at the same position (as 

at A =  0) and Y£ drops by an amount H*S(S +  3)A/(1 +  5 )2 to accomodate the reverse 

jet.

3.3.3 Predictions of the Film Thickness Model

Combining equations (3.9), (3.11), (3.14) and (3.15) yields

A, = A, =  i i ± H > A (3.16)
(1 + S)3 .......... . (1 + S)3'

If Qi* Q2 are the actual fluxes on the upper and lower rollers respectively, (3.16) is 

easily rewritten in terms of, Q, the actual flux through the bead:

(1 +  35 ),_  5 2(5  +  3) 
<̂ 1 ( 1  +  5 )3 ^ ( i  + s y \Q (3.17)

In §§1.3.3 we noted that it is more precise to talk about average, rather than asymp

totic, film thicknesses during meniscus roll coating owing to possible variations in film
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thicknesses around the periphery of the rollers. It is a simple task to convert (3.17) 

into average film thicknesses T\, T2 since by definition

Qi =  VXTX , Q2 =  V2T2

It is easily demonstrated that equations (3.17), (3.18) combine to predict

Ti =  5 (5  +  3)
T2 (1 +  35)

(3.18)

(3.19)

This result is very interesting because it is identical to the prediction of Savage’s [1992] 

‘stagnation point’ model for the fully-flooded case. It also begs another question which 

will be addressed here: is the ratio T\/T2 the same in both fully-flooded and ultra- 

starved forward roll coating?

In Figure 3.3 the prediction (3.19) is compared with Malone’s average film thickness 

data for both meniscus- and fully-flooded forward roll coating. Malone estimates that 

the degree o f starvation in his meniscus roll coating results is such that A (=Q/2VHq 

where V  is the average roller speed) «  0.1 compared to his fully-flooded results where

1.3 <  A < 1.4. Although the ultra-starved data only extends over the range 0.2 < 5  <

2.0 (owing to an inability to maintain a liquid bead outside this range), it is possible 

to conclude that the agreement between theory, i.e. equation (3.19), and experiment is 

quite poor at low 5 , improves as 5  increases, and is, in fact, reasonably good for flows 

with 5  > 1 . Malone noted the discrepancy between theory and experiment at low 5  and 

has attributed this to the effects o f gravity, which are neglected in the theory, but he has 

also highlighted the experimental difficulties in measuring the low fluxes (with T\,T2 «  

10 micrometres typically) in this range. Indeed he has even suggested that there may be 

appreciable losses due to liquid evaporation off the upper roller in this range, although 

he admits that this effect is difficult to quantify. The close agreement between Malone’s 

data for the ultra-starved and fully-flooded cases confirms the hypothesis that T\jT2 is 

very similar in both instances. This result is completely unexpected, given the major 

differences in their flow structures. There is no apparent reason why this should be 

so. In Chapter 5, (3.19) will be compared with film thickness ratio predictions from a 

numerical simulation of forward meniscus roll coating.
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Although the film thickness ratios T\/T% are similar, there are, of course, many 

differences between the fully-flooded and ultra-starved cases. For example, when the 

speed of the lower roller is increased during meniscus roll coating, the flux passing into 

the bead, the thickness of the inlet film and, more significantly, the dimensionless flux 

A (defined by equation (3.3)) also increases (see e.g. Tharmalingham and Wilkinson 

[1978], Figure 4). This increase in the dimensionless flux, which also results in increased 

average film thicknesses T\ and Tj, means that they depend not only on the ratio o f the 

roller speeds but also on the magnitude of the lower roller speed V2- This contrasts with 

the fully-flooded situation where the extra liquid picked up when V2 increases cannot 

pass through the nip; consequently in this case T\ and T2 depend only on the ratio of 

the roller speeds, not their magnitudes. A second difference, which arises for similar 

reasons, lies in the dependence of the individual film thicknesses on the minimum roller 

separation 2Hq. In meniscus roll coating the inlet thickness 2b <  2Hq (see Figure

1.6 (c)) so Tj, 7b are almost independent o f Ho, whereas in the fully-flooded case the 

amount of liquid passing through the nip (and hence the film thicknesses Tj, T2) is 

limited by the roller separation. In his meniscus roll coating experiments Malone has, 

in fact, confirmed the independence o f T\, 7b from Hq.

Since it is impossible to keep all operating parameters in an industrial coating 

process exactly constant, it is important to be in a ‘stable’ operating environment in 

the sense that small changes in the operating parameters do not radically alter the 

film thicknesses obtained. We have already seen that the velocity ratio 5  is extremely 

important since it can be used to alter the industrially important film thickness 2b, 

i.e. the one which coats the final product. In practice it is convenient to adjust 5  by 

simply increasing the upper roller speed whilst fixing the speed of the lower one. This 

means that To, an average inlet film thickness where Q =  V2Tq, is (almost) fixed so 

variations in T\ as 5  changes can be measured by variations in the average thickness 

ratio T1/T0. The latter ratio can also be predicted by the model developed here by 

simply rearranging the film-splitting results (3.17) in terms of To to yield

7b 5 (5  +  3) 7b (1 +  35)
To (1  +  5 )3 ’ To (1  +  5 )3

(3.20)
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The predicted T\/Tq ratio is tested against Malone’s [1992] experimental meniscus roll 

coating data in Figure 3.4 (a); again the agreement between theory and experiment is 

poor at low 5  but improves as S increases until for 5  > 1 the agreement is reasonable. 

Of greater interest, however, is the predicted graph of Tj/To in the range 1 < 5 < 10 

shown in Figure 3.4 (b). It predicts T\ (for a fixed To) to be extremely sensitive to 

small variations in S in the range 0 < S < 2, but relatively insensitive when S > 3. 

Commercial considerations dictate that the flow should be operated with 5 as high as 

possible in order to maximise the amount o f coated product and in fact it is possible, 

using industrial coating liquids different from the Shell Tellus R5 oil used by Malone 

[1992], to operate with S as high as 10. Unfortunately because the bead becomes 

unstable if S is too high (see Malone [1992], Chapter 7), it is necessary to reach a 

compromise between commercial aspirations and practical constraints. In practice 5  «  

3 is found to offer a suitable compromise.

Finally, in Figure 3.5 the predicted graph of T^/To, i-e. ratio of outlet to inlet 

average film thicknesses on the lower roller, is compared with Malone’s [1992] meniscus 

roll coating data. The theoretical prediction and experimental data agree well over the 

entire velocity ratio range.

3.4 Streamline Patterns: Non-Zero Flux

In Chapter 2, we saw that streamline patterns obtained from the Zero Flux model of 

meniscus roll coating showed many of the experimentally observed characteristics, but 

were limited to the idealised case of zero net flux across the bead (see Figure 2.13). In 

this section we show how the assumption relating to the neglect of flux through the 

bead may be relaxed whilst retaining all the other assumptions o f the Zero Flux model 

(see §2.5). This enables streamlines to be obtained in the more interesting case in which 

a small, non-zero flux passes through the bead, by means of a numerical solution.

The basic idea o f this small flux model is illustrated in Figure 3.6. The bead is again

rectangular in shape, but it is no longer closed; instead an inlet film of dimensionless

thickness f0 meets a planar liquid-gas interface, on which the usual assumptions apply,
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at the point P with the result that a small, non-zero flux A flows into the bottom left 

hand corner of the bead. Meanwhile liquid is allowed to flow out of the bead in upper 

and lower outlet films of dimensionless thicknesses t\, <2 and fluxes Ai, A2 respectively. 

These outlet films meet an outlet planar liquid-gas interface at Q and R respectively.

In principle one could impose any relationship between Ai, A2 and A provided they 

satisfied the continuity of flux condition (3.9), but in this model A is assumed to split 

according to the forward meniscus roll coating prediction (3.16). The boundary value 

problem shown in Figure 3.6 cannot be solved by analytical means and must be solved 

numerically instead. Before describing this numerical solution it is necessary to focus 

on the form of the inlet and outlet films.

Without loss of generality consider the inlet film of thickness to and flux A which 

meets the planar interface at P. Assuming that the flow in the inlet film is horizontal and 

one-dimensional, the equations governing the flow in the film are the one-dimensional 

Stokes equations (3.1); expressed in terms of the local co-ordinates (£, y) shown in 

Figure 3.7, they reduce to

d2uiniet _  dp dp 
dy2 dx ’ dy (3.21)

where u,„;e< is the inlet velocity profile and p is the dimensionless pressure defined in 

§2.5.

At first one might propose a fully-developed ‘plug’ flow inlet velocity profile in this 

film. However this would not be compatible with the conditions at the inlet planar 

interface at P, which are that both the horizontal component of liquid velocity and 

shear stress should vanish (see §2.5). Therefore for the inlet velocity profile, to

be compatible with these conditions, it must satisfy

n»'rj/et
dUinlet

dy
0 at y =  t0 (3.22)

Moreover the no-slip condition at the bottom lid, u,„/et =  1  at y =  0, enables dp/dx to

be evaluated and yields

njn/ei(l/) —
2

(3.23)
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the so-called ‘semi-parabolic’ velocity profile. By imposing the velocity profile (3.23) 

at inlet, the total influx into the bead is

Jo înlet dy _ to
H* “  ZH* (3.24)

Note that if a ‘plug’ flow profile was imposed at inlet we would have A =  to/H* instead.

It is now possible to calculate the values of the streamfunction and vorticity at each 

point o f the inlet film from equation (3.23). In §2.3 it was noted that the difference 

in value o f the streamfunction at two different points in a liquid represents the flux 

between them. In the boundary value problem shown in Figure 3.6 it is convenient to 

take the streamfunction xp =  0 on the bottom lid so the value of the streamfunction at 

a point y =  y o f the inlet fluid film is xp' where

- ( , _ £ ) * }  (3,5)
Moreover since, by assumption, there is no flux across the planar interface, the stream-

function is equal to A along it. The vorticity u>, defined by u  =  —V 2xp, at any point 

o f the inlet film is given by u  =  -du iniet/dy. Hence at a point y =  y o f this film, the 

vorticity u  is given by

The velocity profiles in the outlet films are also semi-parabolic. The values of the 

streamfunction and vorticity at points of the outlet films may be obtained by using 

expressions similar to (3.25) and (3.26).

The boundary value problem shown in Figure 3.6 is solved using the streamfunction- 

vorticity F.E. method described in Appendix B. In this solution, the values of the 

streamfunction and vorticity at nodes touching either the inlet or outlet flow boundaries 

are imposed to values given by expressions of the form (3.25) and (3.26). At the upper 

left hand corner, where the inlet planar interface meets the upper lid, there exists a 

dynamic wetting line of exactly the same form as existed for the Zero Flux model. 

The techniques for treating this wetting line have been used earlier in §2.5 and are 

described in Appendix B. Numerical solutions of this boundary value problem were 

obtained using the two F.E. grids shown in Figure 2.14, having execution times o f 80
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and 110 c.p.u. seconds when grids (a) and (b) were used respectively. As in §§2.5.2, the 

coarser grid (grid (a)) was found to be sufficiently refined for the present application, 

and streamlines presented here are derived from numerical solutions employing grid

(a).

Figure 3.8 (a) shows streamlines obtained from a numerical solution of this bound

ary value problem (see Figure 3.6) with 5  = 1, H* =  0.5 and to =  0.05, for which 

(3.20) gives ti =  <2 =  0.025. They capture the essential features o f those obtained 

experimentally in Figure 2.15 (a): the effect of allowing a small flux through the bead 

is to separate eddies of roughly equal size by a thin jet o f liquid which moves in an 

‘S’-shape between them. In Figure 3.8 (b), streamlines are presented for the different 

case in which 5  =  2 , H* =  0.5 and to =  0.05. In this case (3.20) gives

ti =  10/27 x 0.05 , t2 =  7/27 x 0.05 (3.27)

The eddies are once again separated by a thin jet of liquid which flows between them 

before coating the upper lid. In this case, however, as in the corresponding zero flux 

prediction (Figure 2.13 (b )), the upper eddy is roughly twice the size o f the lower one, 

in qualitative agreement with Malone’s [1992] experimental observation, as shown in 

Figure 2.15 (b).

3.5 Conclusions

In this chapter we have developed the first predictive model for the film thicknesses 

produced on upper and lower rollers during forward meniscus roll coating. It is based 

entirely on the flow in the central ‘core’ o f the bead, sufficiently far from the curved 

meniscii. The model predicts that T\/T2 =  5 (5  +  3 ) / ( l  +  35) -  a function of velocity 

ratio 5  only -  which is identical to Savage’s [1992] prediction for fully-flooded forward 

roll coating. Malone’s [1992] forward meniscus roll coating data is in reasonable agree

ment with the theory developed here and also shows a close correlation with his data 

for the fully-flooded case.

As the model is unable to account for the effects o f the curved meniscii which exist 

on either side o f the meniscus roll coating bead, it is possible that the accuracy of
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prediction may be improved by a numerical simulation of the problem which includes 

these effects. This hypothesis is tested in Chapter 5 where numerical predictions of 

Ï 1 /T 2 are compared with the analytical result (3.19) and Malone’s experimental data.

No doubt a conspicuous feature of this chapter is the lack of a predictive film thick

ness theory for reverse meniscus roll coating. This may seem surprising in view of 

the relative simplicity of its flow structure compared with the forward case (compare 

Figure 2.15 (c) with Figure 2.15 (a)). Regrettably, the analysis o f the forward case 

developed here cannot be extended to the reverse case because there is no reverse flow 

between eddies during the latter. Therefore at present it appears that further informa

tion on reverse meniscus roll coating may only be furnished by numerical solutions of 

the problem.
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Figure 3.1: The Co-ordinate System For the Core Flow Model of Forward Meniscus 

Roll Coating

B E A D  C O R E

i r  is
------------->

— >
1

Figure 3.2: Schematic Diagram of the Core Flow Model For Forward Meniscus Roll 

Coating
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a  ULTRA-STARVED EXPERIMENTAL DATA (MALONE C19923) 

Ti/T2 O FULLY-FLOODED EXPERIMENTAL DATA (MALONE [1992])

Figure 3.3: A Comparison Between Theoretical Prediction and Experimental Measure

ments of Ti fTi in Forward Meniscus Roll Coating

(a)

a EXPERIMENTAL DATA (MALONE Cl992])

Tx/Tq -  5 (5  +  3 ) / ( l  +  5 )3

Figure 3.4: The Theoretical Prediction of Ti/T0 in Forward Meniscus Roll Coating: 

(a) Comparison with Experiment; (b) Prediction in the Range 0 < 5  < 10
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(b)
S(S +  3 ) /( l  +  S )3

Figure 3.4 (continued)

o EXPERIMENTAL DATA (MALONE C19923)

T2/To (1 +  3S)/(1 +  S )3

Figure 3.5: A Comparison between Theoretical Prediction and Experimental Measure

ment of T2/Tq in Forward Meniscus Roll Coating
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Figure 3.7: The Inlet Liquid Film
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(a)

>
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Figure 3.8: Streamlines Obtained from Numerical (F.E.) Solutions of the Small Flux 

Model for a Forward Meniscus Roll Coating Bead: (a) 5 =  1, H* — 0.5; (b) 

5 =  2, H* =  0.5
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(a) Dependence on Velocity Ratio 5  with H * =  0.5

5 = 0.5 1.0 1.5 2.0 - 1.0
Zero Flux 36.0 48.0 60.0 72.0 0.0

Poiseuille +  Couette 36.0 48.0 60.0 72.0 0.0

(b) Dependence on Dimensionless Depth H * with 5  =  1

H* = 0.1 0.2 0.5 0.8 1.0
Zero Flux 1200 300 48.0 18.75 12.0

Poiseuille +  Couette 1200 300 48.0 18.75 12.0

Table 3.1: Dimensionless Horizontal Pressure Gradients in the Central Core o f the Bead 

-  A Comparison between Predictions from the Zero Flux and ‘Poiseuille plus Couette’ 

Models

(a) 5  =  1, H* =  0.25

y Zero Flux Poiseiulle 4- Couette
0.25 1.0 1.0
0.20 0.4 0.4
0.15 -0.44 -0.44
0.10 -0.44 -0.44
0.05 0.4 0.4
0.00 1.0 1.0

(b) 5  =  2, H* =  0.25

y Zero Flux Poiseuille +  Couette
0.25 2.0 2.0
0.20 0.36 0.36
0.15 -0 .56 -0 .56
0.10 -0 .76 -0 .76
0.05 -0 .24 -0 .24
0.00 1.0 1.0

Table 3.2: Horizontal Velocity Profiles Across the Bead in the Zero Flux Case
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Chapter 4

The Development of the Free 

Surface Code

4.1 Introduction

In the two previous chapters, meniscus roll coating has been analysed using simple, 

lubrication models for the flow in the central ‘ core’ region (see Figure 2.1). Although 

these analytical models have successfully predicted the main features of the flow field, 

its dependence on velocity ratio, and the average film thicknesses produced on up

per and lower rollers during forward meniscus roll coating, they are still, in some 

senses, incomplete. This is because they are unable to elucidate the nature of the two- 

dimensional, surface tension-dependent flow near the meniscii. Since Malone’s [1992] 

forward meniscus roll coating experiments clearly demonstrate that the flux-splitting 

process actually occurs near the downstream meniscus, it is possible that a fuller anal

ysis o f the problem, including the flow near the meniscii, may lead to more accurate 

film thickness predictions. However the task of modelling these meniscii and the at

tendant dynamic wetting line (see Figure 1.6 (c)) is extremely difficult since they lead 

to the liquid domain having a non-standard shape. Nevertheless, these difficulties, 

which are intractable to traditional mathematical analysis, may be surmounted using 

modern computational techniques (see §1.5) in which the meniscii are represented as 

mathematical boundaries known as ‘Free Surfaces'. In the present chapter we describe

101
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a popular finite element (F.E.) approach for solving steady, two-dimensional flows with 

free surfaces, and illustrate some of the practical difficulties encountered, e.g. in mesh 

generation for flows with highly curved meniscii. It is not, however, the intention to 

discuss the programming methodology behind the F.E. technique itself in any detail for 

two reasons: (i) this would form a thesis in its own right, (ii) there are already many 

excellent texts dealing with this topic -  see for example Cook [1981], Carter [1985] or 

Chen [1991].

In §1.5, we concluded that the most suitable numerical technique for solving steady, 

free surface flows is that employing the F.E. method in conjunction with a ‘primitive 

variables’ (u — v — p) formulation. It will soon become apparent that even the develop

ment of a computer code to solve steady free surface flows is a formidable Undertaking 

because the following non-linear boundary conditions

(i) Zero normal velocity -  the kinematic condition

(ii) Zero tangential (shear) stress

(iii) Normal stress is balanced by surface tension stresses and atmospheric pressure

must be applied at the unknown, and often highly curved, free surface locations.

In the FORTRAN code described here, the free surface formulation is based on 

Kistler’s [1983] ‘Spine Method’. During its development a programme of work was 

devised in which flow problems of increasing complexity are solved, beginning with 

flows in which there are no free surfaces present. At each stage the F.E. predictions are 

validated against either analytical results, previously published numerical solutions or 

experimental data.

4.2 The Galerkin Finite Element Method

4 .2 .1  T h e  D iv e rg e n c e  F orm  o f  th e  E q u a tio n s  o f  M o tio n

The motion of a Newtonian, incompressible liquid o f constant density p and viscosity

over the solution domain ft, is governed by the Navier-Stokes equations (see §2.2).

Following Kistler and Scriven [1983], these equations can be non-dimensionalised by
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scaling lengths with D, a length scale appropriate to il; velocities by U, a charac

teristic velocity; and pressure and viscous stresses by r)U/D. It is also convenient to 

introduce the dimensionless groups Re =  pU  D/r], the Reynolds number, which gives 

a measure of the relative magnitude o f inertial to viscous forces and St =  pgD2/r)U, 

the Stokes number, which indicates the relative importance of gravity to viscous forces 

(g is the gravitational acceleration). Under this non-dimensionalisation, the Navier- 

Stokes equations, expressing local conservation o f linear momentum and mass, may be 

written as

Re u.Vu =  V .£  +  S i /  (4-1)

V.u =  0 (4.2)

where u =  (u ,v) is the dimensionless liquid velocity, £  is the unit vector in the

direction in which gravity acts, and £  is the dimensionless stress tensor. From equation 

(2.13) we see that for a Newtonian liquid

£  =  - p i  +  [Vu +  (V u)T] (4.3)

where £  is the unit tensor and p is the dimensionless liquid pressure. Note, that as the 

effects o f gravity are neglected in this thesis, the Stokes number St is set equal to zero 

in equation (4.1). For the purposes of the analysis, it is convenient to introduce the 

tensor uu which is the diadic product of u with itself such that

(m )ij =  UiUj (4.4)

This enables the governing equations (4.1), (4.2) to be cast in ‘divergence form’ (Kistler 

and Scriven [1983])

Re V .(«u ) =  V .£ ; V.u =  0 (4.5)

from which the F.E. equations for the approximate solution of such a system can be 

derived.

4.2.2 The Galerkin Finite Element Equations

ki Appendix B the philosophy behind the F.E. method is described in relation to the 

«solution o f the creeping flow equations by a streamfunction-vorticity method. Unfortu-
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nately, this method is unsuitable for the solution of general free surface flow problems 

because (a) the normal stress condition (iii) cannot be conveniently formulated in terms 

of the ip, u> variables, (b) no variational principle exists for flow at non-zero Reynolds 

number (see Carter [1985] p 117). These problems can, however, be solved by the 

‘Galerkin Method of Weighted Residuals’ in which the Navier-Stokes equations are for

mulated in terms of the primitive variables. In this formulation the dependent variables 

are the nodal values of (u, v,p).

In Chapters 2 and 3, numerical solutions of the creeping flow equations employing 

6-node triangular elements with quadratic shape functions for both the streamfunc- 

tion and vorticity have been seen to give acceptable results. However when primitive 

variables are used the question of the order of the shape functions used to interpolate 

the velocity and pressure fields is an important one because the lack of an explicit 

equation for the pressure coupling can lead to severe numerical difficulties. For exam

ple, an improper combination of velocity and pressure interpolations may lead to an 

ill-conditioned global matrix which yields a spurious pressure solution, or, in extreme 

cases, no solution at all because of the singular nature of this matrix (see Chen [1991] 

pp 39-40). The explanation for such occurences is given by Olson et al [1978] in terms 

of the existence of zero eigenvalues, a phenomenon that is often referred to as pressure 

modes, see Sani, Gresho, Lee and Griffiths [1981].

An approach which overcomes these difficulties is the ‘mixed-interpolation’ formu

lation introduced by Hood and Taylor [1974]. They used elements with different order 

shape functions for fluid velocities and pressure in order to curb the oscillatory pressure 

solutions that resulted from employing equal order interpolations. In the literature, el

ements which have different order interpolations for fluid velocity and pressure are 

known as ‘mixed elements’ . In certain cases, even mixed elements may give a spurious 

mode; for example an improper arrangement of mixed elements for certain boundary 

conditions may also result in a ‘locking’ problem as explained by Hughes [1987],

It is now generally recognized that in the primitive variable F.E. formulation of the

Navier-Stokes equations, the pressure should be interpolated at least one order lower

than the velocities; see for example Fortin and Thomasset [1979], Huyakorn, Taylor,
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Lee and Gresho [1978], Lee, Gresho and Sani [1979]. Theoretically speaking, if a mixed 

element satisfies the so-called Ladyzenskaya-Babusko-Brezzi, or LBB stability condition 

(see Babuska and Aziz [1972]) with the pressure interpolation one order lower than that 

for the velocities, the rate of convergence is said to be ‘optimal’ and no locking will 

occur. Unfortunately it is a rather complex procedure to verify whether an element 

satisfies the LBB condition -  a detailed description of the mathematical aspects is given 

by Oden and Carey [1984]. The most widely used elements that appear in the literature 

which satisfy the LBB condition are shown in Figure 4.1 (a)-(d), they are

(a) Triangular: Six node velocity - three node pressure (V6/P3)

(b) Quadrilateral: Nine node velocity - one node pressure (V9/P1)

(c) Quadrilateral: Nine node velocity - three node pressure (V9/P3)

(d) Quadrilateral: Nine node velocity - four node pressure (V9/P4)

In their study, Kistler and Scriven [1983] used quadrilateral V9/P4 elements. Here, 

however, triangular V6/P3 ones are preferred for the same reasons given in Appendix 

B, namely

(i) it is much easier to locally refine a particular grid

(ii) (important in the early development of the code) the F.E. equations produce a 

global stiffness matrix with a smaller bandwidth, thereby reducing the storage 

requirement (see Appendix C)

If Nk represents a 6-node biquadratic shape function for the velocity field u and Vv a

three node bilinear one for the pressure field p, then (see §B.5)
/  /

Nk =
1

0

at node k

at all other nodes
V’/ =

1  at the /th pressure node 

0 at all other corner nodes
(4.6)

I f«*  =  iuk +  j_vk (k =  1 , . . . ,  K ) are the values of the velocities at the velocity nodes 

and pi (/ =  1 , . , . ,  L) are the nodal values of the pressure, then the F.E. approximation 

to the velocity and pressure fields are written in terms of these nodal values
K  L

u = Y Ì y * Nk
fc=l 1=1

(4.7)
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Note that equation (4.7) is of the same form as the F.E. approximation to if) and u  

given in Appendix B.

The local node numbering scheme used in the primitive variable formulation is 

shown in Figure 4.2. It differs from that used in Appendix B since the first 3 local 

nodes are the corner nodes. This convention simplifies the problem of incorporating 

pressure freedoms into the code (see Carter [1985] pp 199-200). As in Appendix B the 

shape functions Nk and ipi associated with a particular element may be conveniently 

expressed in terms of local ‘area’ co-ordinates. If Nk is the velocity shape function 

associated with the kth local node (under the local node numbering scheme shown in 

Figure 4.2) and L\, £ 2, £3 are defined by equation (B.33) then

N\ — L\(2L\ — 1) , N4 =  4X1 X2

N2 — £ 2(2X2 — 1) , N5 =  4X2X3 (4*8)

N3 = £3(2X3 - 1 )  , N6 =  4X1X3

while the 0 / shape functions associated with the /th corner node are simply,

01 =  £1 1 02 =  £2 » 03  =  £3 (4 -9 )

Note that at any point in the element, these shape functions satisfy the relationship

E  m , v )  = E * ( ( , » )  = 1  <4-10)
t=i /=i

Now for the theory. We illustrate Galerkin’s method of weighted residuals by de

scribing how it can be used to solve a relatively simple fluid flow problem in which 

the fluid velocity on the boundary dil is known -  additional theory needed to solve 

more complicated free surface flow problems will be described in subsequent sections. 

The idea is very simple: the 2K  +  £ equations needed to determine the 2K  +  X un

knowns, i.e. the nodal values of u, v, and p, are provided by weighting residuals of the 

momentum and continuity equations with the shape functions Nk and 0 / respectively, 

and setting them equal to zero -  see Kistler and Scriven [1983] p 261. Note that if we 

weighted the momentum and continuity residuals by 0 / and Nk respectively this would 

provide only 2X + K  equations, not the requisite 2K  +  X. Weighting the momentum
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equation of (4.5) with each Nk and setting it equal to zero gives 

R\j =  f  Nk(Re V.(uu) — V .ct) dQ, =  0
JQ ~

Using the fact that

Nk V.(uu) = V.(N tuu) — VNi-.(uu)

and

(4.11)

(4.12)

(4.13)Nk V .£  = V.(Nkg) -  VNk.(g) 

enables (4.11) to be rewritten as

R Ï f  = f [ R e V . ( N k m )  -  R e V N k . ( m )  + V N k .e . -  V . ( N ks ) ] d S l  =  0 (4.14) 
Jq — ~

Finally, applying the divergence theorem to the purely divergent terms yields

R m  =  /  [VlVt-.f—Reuu +  ^)] dit — f  Nt-n.i—Reuu + a)ds =  0 (4.15)
Jn Jan ~

Equation (4.15) provides the 2 scalar algebraic equations needed to determine the

velocity freedoms (Ufc.vjt) which are associated with node k.

There are two contributions to each momentum residual, namely those due to (i)

the domain fi, (Rm)îi , and (ii) the boundary dQ, (R\f)an. The latter contribution is

only important in free surface flows and does not need to be evaluated in the present

simple problem for the following reasons. Since we are assuming that u is prescribed

on dCl, the velocity freedoms (Uk,Vk) associated with each of the (Kb say) boundary

nodes are already known. This means that the only weighted residuals which need to

be evaluated are those associated with the K' (= K  — Kb) nodes which do not lie on

the boundary. From the properties of shape functions given in (4.6) it follows that each

Nk associated with the K' interior nodes is identically equal to zero on dil. Therefore

their associated momentum residuals RkM simply reduce to R\f — (Rm )o where

(Rm)u =  / VNk.(-Reuu  +  a) dfl (4.16)
Jil —

As these domain residuals have to be evaluated in all subsequent solutions, we describe

their form in detail.
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Since V.u =  0, it is easily shown that VN t.(uu) = (VNk-u)u which may be written 

in the following vector form

X7 \r f \ (  dNk dNk (4.17)

For a Newtonian fluid, g  is given by (4.3) and after algebraic manipulation, the contri

bution VNk-g may be split into x and y components since

(VNk.g)x =  - p —  + 

(VAVg), = -¡>̂ 7 +

du dNk dv dNk 2 du dNk 
dy dy dx dy dx dx 
dv dNk du dNk dv dNk 
dx dx ^ dy dx ^dy dy

(4.18)

(4.19)

In the F.E. code, it was found convenient to introduce arrays X1(K),..., X5(K) and 

Y l(K ),..., Y5(K), such that the contributions to the x and y components of the mo

mentum residuals (4.15) due to the domain ii, (Rm )U , x  and (Ii^)n,y respectively, are

(RkM)n* = f  [ - R e X l ( K )  +  X 2(K)  + X3(K)  +  X4(K)  +  X5(K)  ] dii (4.20) 
J 0

and

(RkM)a,v = (  [ —ReYl(K)  +  Y2(K)  +  YZ{K)  +  Y4{K)  +  Y 5( K) ] dii (4.21)

where

X l(A ') =  u tdNk
dx

4- uv

X2( K)  = -V  

X3(K)  = 

X4(K)  = 

X5( K)  =  2

dNk 
dy 

dNk 
dx 

du dNk 
dy dy 
dv dNk 
dx dy 
du dNk 
dx dx

Y1(K)  

Y2(K)  

YZ(K)  

Y 4(K)  

YS(K)

dNk , 2
U V — r—  +  V

dx

= - P
dNk

= 2

dy 
dv dNk 
dx dx 
du dNk 
dy dx 
dv dNk
dy dy

dNk
dy (4.22)

(4.23)

(4.24)

(4.25)

(4.26)

The F.E. equations needed to determine the L pressure coefficients in (4.7) are 

provided by the ‘Continuity Residuals’ , obtained by weighting the continuity equation 

of (4.5) by the presssure shape functions fy:

Rlc
ôtA
dy)

dii =  0 (4.27)
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4.2.3 Solution of the Galerkin F.E. Equations: Newton Iteration

Now that the F.E. equations (4.15), (4.27) have beed obtained, it is necessary to solve 

them. In this work, a solution technique based on Newton iteration, which was first used 

by Ruschak [1980] and Saito and Scriven [1981], is chosen because the convergence rate 

is much faster than alternative methods based on successive approximation techniques 

(see §1.5). Although in the present simple problem there are Dirichlet conditions (i.e. 

where the value of the variable itself is prescribed) on the boundary node velocities 

(ut, vie), it is more convenient to describe Newton’s method under the assumption that 

all 2K  +  L freedoms have to be found; we will then describe how the theory is altered 

to take account of these boundary conditions.

Newton’s method requires the evaluation of the derivatives of the momentum and 

continuity residuals with respect to the finite element coefficients {ujt, Vk,pi}. In the 

present simple flow problem, the vector of F.E. coefficients a can be subdivided into 

uT =  [ u i , . . . , u / r ] ,  vT =  [ v i , . . . , v / v ' ]  and£T =  [p i, . . .,P l ] where

SLT =  [nT,nT,£T] (4.28)

«
Similaxly, the weighted residuals of the momentum equations, Z m , have x and y com

ponents (RkM)x, (RkM)y so

Bm  =  ( 4 ) . !  +  ( i & W  (4-29)

where i and £ are unit vectors in the x and y directions respectively. The residuals 

(Rm )x, (R\f)y can be combined with the continuity residuals Rlc  in a vector of weighted 

residuals, R(a),  given by

Z T =  [ (£ m ) J ,U ^ ) Î ,£ 2 ]  (4.30)

where (Rm )Z = [ (R ^ )* ,. . . ,  (#&)*]> (Zm )1  =  [(R\t)y, • • • > (R m )v1 and

Z c  — [R h  • • v ^ c l '

The Newton iteration process finds the updated coefficients from the last

computed set, a n, by solving the linear system of equations given by
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where the Jacobian J is defined as

L  =  | ^ ( «  =  «n ) (4-32)

Now for the boundary conditions. The Dirichlet conditions on boundary velocities 

(«jt, t?*) (referred to as essential conditions in F.E. terminology) are imposed by (i) 

setting the velocity freedoms associated with boundary nodes to their known values; (ii) 

deleting the momentum residuals (4.15) formed from those shape functions AT* that are 

associated with boundary nodes from the equation set (4.31); (iii) deleting derivatives 

OR/don with respect to those a, which are known (in this case the boundary velocities 

(lit,?;*)). In other words the size of the Jacobian J is actually (2K ‘ -f L)x(2K'  +  L) 

rather than (2K  +  L) x( 2K  + L).

In §B.5 we saw that the practical problem of computing the F.E. equations in flows 

with elements of general size and orientation (as is definitely the case in free surface 

flows) can be alleviated by isoparametrically mapping a standard element, defined in 

local co-ordinate space, into each of the deformed elements in the flow domain. This 

technique enables the residuals and their derivatives with respect to the F.E. coefficients 

to be evaluated in the local ( f ,q )  space, shown in Figure 4.2, by invoking equations 

(B.41)-(B.43). As in the streamfunction-vorticity method, the full residual vector R 

and global matrix are assembled from contributions at element level. These element- 

level contributions take the form of either area or boundary integrals and are again 

evaluated using Gaussian quadrature. The matrix ¡L is stored in a ‘banded-matrix’ 

form in order to reduce the storage requirement -  see Appendix C.

As Newton’s method is an iterative technique, we have to decide on an initial ap

proximation and a convergence criterion. The former is, of course, problem dependent 

and must be tailored to the specific problem of interest, whereas the suitability of the 

latter should always be evaluated by comparison with different criteria. However, the 

author’s experience suggests that both the maximum change among the unknown coef

ficients, |aj,+1 -  aj,| an<* larSest among the unknown residuals |-R,(an)|mai are 

useful indicators for viscous, free surface flows. It can be shown that Newton iteration 

converges quadratically as a solution is approached (see Isaacson and Keller [1966])
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which means that if n — 1 , n, n +  1  refer to successive iterations, then

| « n + i - ttn| < C k - a j , . , ! 2 (4.33)
I I m ax  1 Imax

for some constant C when n is large. This convergence rate means that Newton it

eration not only offers a drastic improvement on convergence rates of alternative suc

cessive approximation techniques, it also affords a useful test of the correctness of 

the Jacobian and the iteration procedure: if the convergence rate is not quadratic as 

the solution is approached then the Jacobian has been evaluated incorrectly (Kistler 

and Scriven [1983]). In the work carried out here, an iteration was terminated when

The theory developed so far has not considered free surface flow problems; the 

additional theory needed to solve them will be discussed in subsequent sections. Nev

ertheless, the power of Galerkin’s method is amply demonstrated in the next section, 

in which primitive variable solutions are obtained for the 3 creeping flow problems 

developed in Chapter 2.

4.3 The Solution of Cavity-Driven Flows

4.3.1 Flow in a Lid-Driven Cavity

The flow in a lid-driven cavity is of exactly the same form as the hypothetical problem 

used in §§4.2.2 to illustrate Galerkin’s weighted residual method. It provides a suitable 

initial test problem when developing a fluid mechanics code because the boundary 

conditions are simple, the liquid domain is a regular shape, and there are no free 

surfaces to complicate the analysis. The problem is non-dimensionalised as in §2.3, 

leading to the dimensionless boundary value problem shown earlier in Figure 2.2 (b); 

note that the essential boundary conditions on liquid velocity, in terms of the primitive 

variables, are shown in brackets. They are imposed by the technique described in 

§§4.2.3. Once again the Reynolds number, Re =  p U D/r), is assumed to be so 

small that inertia effects are negligible. In this section, solutions for this creeping flow 

problem are only presented for the special case of a square cavity.
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The iterative procedure begins from a start-up approximation in which only the 

(known) liquid velocities at the boundaries are imposed. All other unspecified freedoms, 

namely the liquid velocities at internal nodes and every pressure freedom, are initialised 

to zero. In §2.3 we learned that it is important to check the accuracy of any F.E. 

solution since its accuracy depends on the degree of refinement of the computational 

grid and also the numerical integration schemes chosen. For this reason primitive 

variable solutions to this problem are obtained using every combination o f the 3 grids 

shown in Figure 2.3 and quadrature schemes (A)-(D) for area integrals shown in Figure 

B.6. In the numerical results presented here, the F.E. equations (4.31) are solved 

by the same ‘banded-matrix’ solver as was used earlier in Chapter 2. Once again 

changing the number of quadrature points had only a minor effect on the execution 

time of an iteration: results obtained using grids (a) and (c) taking approximately 70 

c.p.u. seconds, whereas those employing grid (b) took 1 10  c.p.u. seconds. In all cases, 

converged solutions from the start-up approximation were obtained in 3 iterations.

Table 4.1 shows (a) horizontal components of liquid velocity on the vertical cen

treline x =  0.0, (b) vertical components of liquid velocity on the horizontal centreline 

y =  1.0  obtained from (i) the semi-analytical solution (2 .1 1 ) truncated after 20 and 

40 terms, (ii) primitive variable F.E. results using grid (a) of Figure 2.3 and schemes 

(A ) and (D) of Figure B.6. Results from schemes (B) and (C) are not shown as they 

agree with those of scheme (A) to the sixth decimal place. It may be seen that results 

obtained from the semi-analytical solution converge to 3 decimal places after 20 terms 

are taken and are in good agreement with primitive variable results obtained using all 

four quadrature schemes. Table 4.2 compares primitive variable F.E. results (obtained 

using grid (b) of Figure 2.3 and scheme (A )) with semi-analytical results derived from 

the series (2.11), truncated after 40 terms. The agreement is good, but not apprecia

bly better than with those obtained using grid (a), thereby suggesting that grid (a) of 

Figure 2.3 is sufficiently refined for the present application.

In the results presented so far, we have chosen to compare the velocities generated in

primitive variable F.E. solutions with those obtained analytically by representing them

in tabular form. In most instances, however, it is far more convenient to represent
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velocities as a set of velocity ‘vectors’ whose sizes are proportional to the magnitude 

of, and directions parallel to, the velocity at the arrow’s tail. Figure 4.3 shows velocity 

vectors (i) from a primitive variable solution using grid (b) and scheme (A ), (ii) derived 

from the semi-analytical solution (2.11), truncated after 40 terms. This velocity vectors 

representation of the results immediately emphasizes their close agreement since they 

are visually indistinguishable. The velocity vectors representation is used extensively 

in the remainder of this thesis.

Finally, when the asymmetric grid (c) of Figure 2.3 is used, a slight asymmetry 

in the numerical solutions is observed. Nevertheless, these results are still in good 

agreement with liquid velocities derived from the analytical solution (2 .1 1 ).

4.3.2 Flow in an Open, Driven Cavity

In this section the Galerkin F.E. method is extended to solve Canedo and Denson’s 

[1989] model of flow in an open pool of a Newtonian, incompressible liquid generated 

by a slowly moving side wall. The problem is non-dimensionalised as in §2.4 with the 

result that it reduces to the dimensionless boundary value problem shown in Figure

2.8 in which Re — p U L/r). The only case considered here is that o f creeping flow 

(Re =  0) in a square cavity with A* =  1 .0.

At the bottom and side walls, the liquid velocity is known; these are essential 

conditions and are imposed in the usual way (described in §§4.2.3). At the planar 

liquid-air interface, however, there are two different conditions: v =  0 and the zero 

shear stress condition du/dy = 0. The former is an essential condition on the vertical 

component of liquid velocity, hence the ^-components of those momentum residuals

(4.15) associated with upper boundary nodes can be discarded. The latter is different, 

it is not an essential condition. In this case it is necessary to evaluate (R\f)x,an, the 

contributions to the r-components of those momentum residuals (4.15) associated with 

upper boundary nodes due the boundary d£l.

Since u .n  =  0 on all boundaries, ( R ’l f ) a n  may be simplified to

( R kM )a n  = -  /  N k n .g _ d s  (4.34)
Jan ~
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From equation (2 .12 ) we see that n.g_ represents the dimensionless stress exerted on a 

boundary due to the liquid motion, hence at the upper boundary nodes the zero shear 

stress condition may be interpreted as (n.g_)x =  0. Consequently, from equation (4.34), 

the »-component of (R^)dn is equal to zero for those nodes on the upper boundary. 

Hence the only non-zero contribution to the »-components of momentum residuals 

associated with upper boundary nodes is that due to the domain, i.e. (fZ^)n. When 

this residual is included into the equation set (4.31), the Newton iteration can begin.

In view of the close agreement between analytical and numerical solutions observed 

in §§4.3.1, the numerical solution presented here is obtained using quadrature scheme 

(A) of Figure B .6 for area integrals and grid (a) o f Figure 2.10. The iteration is begun 

using an initial estimate in which only the essential conditions are imposed, all other 

velocity and pressure freedoms being initialised to zero. The F.E. equations (4.31) are 

again solved by the NAg F.E. ‘banded-matrix’ solver. A converged solution is obtained 

from the start-up approximation in 3 iterations, each iteration having an execution 

time of approximately 70 c.p.u. seconds. *.

Table 4.3 shows a comparison between (a) horizontal components of liquid velocity 

on the vertical centreline »  =  0.5, (b) vertical components of liquid velocity on the 

horizontal centreline y =  —0.5 obtained from (i) the semi-analytical solution (2.19) 

with 20 terms in the series, (ii) the primitive variable F.E. solution of this problem. 

The agreement between them is very good. Velocity vectors from the two solutions are 

plotted in Figure 4.4, once again they are indistinguishable from one another.

4.3.3 The Zero Flux Model of Meniscus Roll Coating

In this section Galerkin F.E. solutions of the Zero Flux Model of meniscus roll coating 

are compared with those obtained analytically from equation (2.23). The problem is 

non-dimensionalised as in §2.5 with the result that it reduces to the boundary value 

problem shown in Figure 2.12. The only cases considered here are those for a cavity in 

which the lid speeds Vj, V2 are so small that the creeping flow approximation is valid.

The boundary conditions on the lids are essential conditions on the liquid velocity 

and are imposed in the usual way. The conditions on the vertical liquid-air interfaces



Chapter 4: The Development o f the Free Surface Code 115

are similar to those given in §§4.3.2, namely u =  0 and the zero shear stress condition 

dv/dx =  0. The former is an essential condition on the horizontal component of liquid 

velocity, imposed by discarding the x-components of those momentum residuals (4.15) 

associated with nodes on the side walls. In this problem the zero shear stress condition 

can be interpreted as (n.£)y =  0 on the side walls and is imposed by a method

exactly analogous to the one described in §§4.3.2. This means that the only non-zero 

contribution to the ^-components of those momentum residuals (4.15) associated with 

side wall nodes is that due to the the domain fl, i.e. (7Z^)y=(lZ^f)Utn This completes 

the equation set (4.31) for this problem.

The Galerkin F.E. results presented here refer to the cases of a cavity with H* =  0.5 

and 5  =  1, 2. They are obtained using quadrature scheme (A) for area integrals and 

grid (a) of Figure 2.14 as the computational mesh. The problem is initialised and solved 

as for the previous two flows. A converged solution was reached in 3 iterations, each 

taking approximately 80 c.p.u. seconds.

Liquid velocities, derived from the analytical solution (2.23) truncated after 40 

terms, are compared with those obtained by the Galerkin F.E. method in Table 4.4. 

The solutions agree well in both the S = 1  and 5 =  2 cases. Velocity vectors from both 

solutions are plotted out in Figure 4.5. Although the flow fields are not as clear as they 

are in Figures 4.3, 4.4, close inspection reveals that the analytically- and numerically- 

generated flow fields are indistinguishable from one another.

4.4 The Slot Coater

4.4.1 Introduction

In the above sections, we have shown how Galerkin’s weighted residual method can 

be used to solve simple flows in rectangular geometries with straightforward boundary 

conditions. In the remainder of this chapter, we describe the special techniques needed 

to enable the method to be extended to (i) incorporate the 3 free surface boundary con

ditions (see §4.1) and (ii) represent the variable free surface locations mathematically, 

as is required in the solution of more complicated viscous free surface flow problems.
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In the present section these techniques are illustrated by applying them to the solution 

of a relatively simple free surface flow, that of the ‘slot coater’ .

The slot coater has been studied by many authors, see for example Coyne and Elrod 

[1970,1971], Saito and Scriven [1981] and Carter [1985]. The geometry of this process, 

shown in Figure 1.20, consists of a flat substrate (the web) moving with constant 

velocity Uweb from a slot of constant width H. The upper edge of the slot consists of 

a rigid wall terminating at the point X  =  0, Y  =  H. Liquid moves under pressure in 

the slot and separates from the upper edge, relaxing far downstream to uniform ‘plug’ 

flow. The problem is non-dimensionalised by introducing the following dimensionless 

quantities

u =  U/Uweb , =  V/Uweb , p = HP/vUwb (4.35)

q =  Q/UwcbH , x =  X/H  , y =  Y/H (4.36)

where Q is the actual flux through the slot. The dimensionless boundary conditions 

used here follow those given by Carter [1985, pp 113-116] in his study of slot coating. 

Referring to Figure 1.20 these are 

At Inflow (x —> oo, 0 < y < 1)

u  =  a ( y )  . v  =  0 (4.37)

where g(y) represents fully developed Poiseuille-Couette flow subject to the no-slip 

conditions at the web and upper edge, namely

5 (0) =  - 1  , 5 ( 1 ) =  0 (4.38)

Since the dimensionless flux, q, is given by

q = -  [  g ( y )  dy (4.39)Jo

the inflow conditions may be rewritten as

“  =  9{y) -  (6tf ~ 4)(j/2 -  y) + y2 -  1 ,v =  0 (4.40)

At Outflow (x —> —oo, 0 < y < h°°)

u — — 1  , v =  0 (4.41)
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where h°° = q, the so-called ‘plug1 flow conditions fax downstream.

At the Upper Wall (y =  1 , x > 0)

u =  0 , u = 0 (4.42)

On the Web (y =  0)

u — — 1  , v =  0 (4.43)

The above boundary conditions are all essential conditions on the liquid velocity and 

are imposed in (4.31) by the usual method; the free surface boundary conditions are, 

however, quite different.

4.4.2 Incorporation of Free Surface Stress Conditions into the Galerkin 

Equations

In §4.1 we saw that in a steady free surface flow there are three conditions to be satisfied 

at the unknown free surface location. The kinematic condition, u.n = 0, which

expresses the fact that there should be no flux of liquid across a steady free surface, is 

discussed in greater detail in the following section. Instead we focus attention here on 

the two remaining conditions which stipulate that the normal and tangential stresses 

must balance.

In the usual situation where the free surface represents a liquid-air interface, the 

fact that air has a viscosity which is negligible compared to that of most liquids means 

that the tangential stresses at the free surface must also be negligible (see equation

(2.15)). In this case the normal and tangential stress balance may be expressed via the 

single vector relation (Kistler and Scriven [1983])

n.a 1 n 
Ca Tcupu R Pa (4.44)

where Ca = tiU/T (U is a suitable velocity scale for the flow) is the dimensionless Cap

illary number measuring the relative importance of viscous to surface tension stresses; 

pa the dimensionless ambient air pressure; n the outward pointing (with respect to the 

liquid) unit normal; and rcurv the dimensionless radius of curvature of the free surface.
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Ruschak [1980] demonstrated that by combining the useful result that

dt _  n 
ds rCUrv

where t is the unit tangent vector pointing in the direction o f increasing arc length, a, 

along the free surface, with a measurement of pressures relative to the ambient pressure 

achieved by the transformation p —> p — p„, it is possible to rewrite the stress balance 

(4.44) in the following computationally convenient form

(4.45)

n.o = 1  dt (4.46)Ca da

This result is extremely important since it enables the contributions to the momentum 

residuals (4.15) due to the free surface, (1?^)/.*., to be evaluated where

CEa/) /.»  =  -  /  NkR.(-Re uu -f g) ds (4.47)
Jf.t.

Now using the kinematic condition, n.u =  0, and (4.46) yields

«*«>'- = -  s  s < 4-48>
which may be integrated by parts (Ruschak [1980]) to give

-  h  L . 1 is  -  h £i - Nt &1 (4-49)

where to and are the unit tangent vectors to the beginning and end of the free 

surface respectively. Note that although boundary integrals are usually taken in an 

anticlockwise sense, in practice it is possible to choose the arc length a to increase in 

either an anticlockwise or a clockwise sense, provided that one is consistent in taking t 

to be in the same direction.

Any numerical simulation of a free surface flow problem requires the specification of 

a mathematical relationship between the free surface position and a set of ‘free surface 

parameters’ , whose values determine its actual location (e.g. in order to determine t 

and a in equation (4.49)). The precise form of this relationship, of course, depends on 

the mathematical representation chosen. In this thesis free surfaces are represented by 

Kistler’s [1983] ‘Spine Method’ , the main features of which are described in the next 

section.



Chapter 4: The Development o f  the Free Surface Code 119

4.4.3 Free Surface Representation: The Spine Method

The basic idea of the Spine Method is to parametrise a free surface by its location along 

a series of conveniently placed, independent spines. In the spinal representation of the 

slot coater shown in Figure 4.6, each spine is defined by a fixed base point x?B and a 

fixed direction vector e,-. In this representation the ‘free surface parameters’ are the 

spinal distances {/i,}  along each spine between its base and free surface nodes.

Since the free surface location is not known a priori, the spine distances (called 

‘heights’ hi) become additional unknown coefficients which have to be determined. As 

a result the vector of F.E. coefficients a defined in (4.28) must be expanded to include 

the free surface parameters {h ,}; hence for the slot coater a r  = [ur  , V? , J? , h?] 

where h = {hi}. The additional equations needed to determine these spine heights are 

furnished by weighting the kinematic condition, n.u = 0, which must be satisfied at 

a free surface, by the shape functions Nk associated with the free surface nodes. These 

extra equations are given by (Kistler and Scriven [1983] p 262)

R{ =  f  Nk n.u ds =  0 (4.50)
Jj.».

which means that in this case the algebraic equation set (4.31) is composed of equations

(4.15), (4.27) and (4.50).

The computational grid used in this section is similar to those used by Saito and 

Scriven [1981] and Carter [1985]. This grid is shown in Figure 4.7 (where for reasons 

of clarity it is scaled vertically by a factor of 2) and consists of 90 elements and 215 

nodes, 27 of which are free surface nodes. It divides naturally into three regions. In 

region 3 the position of all nodes is invariant throughout the iteration. In regions 1 and 

2 however, i.e. the free surface regions, the triangular elements adjust with the free 

surface position during the iteration procedure. In region 2 , where the curvature of the 

meniscus is large, the spines pass through a polar origin O outside the liquid; and in 

region 1 the spines are vertical.

All nodes in regions 1  or 2 lie on a free surface spine. The ith spine is defined by

(i) the (fixed) position vector of its base node, x B, (ii) a unit vector c,- specifying its 

direction. The spine ‘height’ hi is the distance along the spine between the base node
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and the node which also lies on the free surface, known as a ‘free surface node’ . On each 

spine, between its base and free surface nodes, lie other nodes whose distances from 

the base node are prescribed proportions wj of its associated spine height h,-. In fact 

if node k is the jth node on the ith spine, then its position vector x* may be expressed 

mathematically by the relation

£* = + Wj hi §i (4.51)

In the grid shown in Figure 4.7, there are 7 nodes on each spine, i.e. including the base 

and free surface nodes, and the proportions wj are equal to 0, 1/6, 1/3, 1/2, 2/3, 5/6 

and 1 . Expression (4.51) directly links the location of the nodes to the positions of the 

boundaries.

The F.E. equations (4.15), (4.27), (4.50) are solved by Newton iteration. As before, 

the global Jacobian matrix is assembled from the element-level Jacobians. Since ele

ments in region 3 are unaffected by the free surface shape their element-level Jacobians 

only contain derivatives with respect to their associated velocity and pressure freedoms. 

These derivatives are straightforward; they are evaluated as in §4.3 on ‘cavity-driven’ 

flows.

However, nodes in regions 1 and 2 move according to equation (4.51) as the free 

surface parameters {/i,}  are updated during an iteration. Therefore the element-level 

Jacobians of elements in regions 1 and 2 must also contain derivatives with respect to 

the (three) spine heights on which they depend. This is by far the most difficult part 

of the solution process because residuals depend on h not only through the integrands, 

but also on the limits of integration since fi is also a function of h.

It is at this stage that the power of the isoparametric mapping (B.40) is again 

apparent. The momentum, continuity and kinematic residuals consist of combinations 

of integrals of the form

1(0, h) =  /  F (x ,0 ,h ) dxdy and (4.52)
JA(h)

L(0,h) =  f  G (x ,0 ,h )d s  (4.53)
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where ft? =  (ur , vT,£ r) is the vector of F.E. coefficients for the flow field, A(h) is 

the liquid domain and S(h) the boundary. Derivatives of (4.52) with respect to h are 

obtained by noting that (see §B.5)

/(£ ,& ) =  E  i  /  \J\ dÇdr,) (4.54)
element»

where J  is the Jacobian of the element-level isoparametric mapping (B.40). This 

eradicates any dependence of the domain of integration on the spine heights {/i, } so

m  = £  (4-55)
elements ü *

where the derivatives of the integrand may be obtained analytically.

The practical evaluation of free surface integrals of the form (4.53) and their deriva

tives with respect to the F.E. coefficients is the subject of the following section.

4.4.4 Evaluation of Free Surface Integrals

In §B.5 a technique, based on the isoparametric mapping (B.40), was described which 

enables integrals along fluid boundaries, to be evaluated in terms of local ‘area’ co

ordinates. This technique is now extended to evaluate those free surface integrals, 

i.e. equations (4.49), (4.50), required in Galerkin F.E. solutions of free surface flow 

problems.

In the slot coating grid shown in Figure 4.7, the free surface is composed of a series 

of sides of those ‘free surface elements’ which contain three free surface nodes. One such 

side and its associated free surface element is shown in Figure 4.8. Suppose that without 

loss of generality the global node numbering scheme is such that the side along the free 

surface contains local nodes 1, 3 and 6 with respect to the local node numbering scheme 

shown in Figure 4.2. Then under this assumption if Ni denotes the shape function 

associated with the ith local node, the area co-ordinate =(Ni = N4 = N^)= 0 

along the free surface side. Hence the other (non-zero) area co-ordinates along this side 

L\, ¿3  satisfy the relation

L\ +  I 3 =  1 (4.56)

which means that the non-zero shape functions N i ,  N 3 , N e  collapse to quadratic 

functions of a single, independent area co-ordinate. Now in the slot coating results
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presented here, the direction of integration was chosen to be in the downstream direction 

from the separation point P to the outflow boundary -  see Figure 1 .20. In this case it is 

more convenient to parametrise the shape functions in terms of the area co-ordinate Lx 

because it increases along the side of the element in the direction of integration. The 

form of the isoparametric mapping (B.40) means that along the free surface side, the 

global free surface position is the following simple function of the global co-ordinates 

(xuVi)i (x6> Ite) and (1 3 , Ite) of local nodes 1, 3 and 6 respectively:

x =  Xj N X( L X) + Xe N^ ( Li )  + 13  N ì ( L x) (4.57)

y = y 1 + ite Ne(L\) + ite ^ ( L i )

where (see equation (B.49))

N x = L x (2L x -  1) , N 6 = 4Xi (1 -  L x) , N 3 =  1 -  3L x +  2L]  (4.58)

Equation (4.57) is of crucial importance since it allows the unit tangent vector t and 

unit normal n to take on simple and computationally convenient forms

(dx/dLx i  + dy/dLx j)
t =

n —

s/[{dxldLxy  +  (dy/dLxy )) 
(-dy/dLx i +  dx/dLx f)  

VT{dx!dLxy  +  (dy/dLxy ))

(4.59)

(4.60)

where dx/dLx, dy/dLx are obtained by simply differentiating (4.57) with respect to Lx 

(see also equations (B.52), (B.53)).

To aid the calculation of dNk/ds in (4.49), we use the result that along the free 

surface (with parameter Lx) (Kistler and Scriven [1983] p 261)

dNk _  dNk dLx
IT -  - VNi = aI7 IT (4.61)

where ds/dLx = y/{(dx/dLx)2 +  (dy/dLx)2}. These results enable the free surface 

stress integrals (4.49) to be calculated since

/ * ̂ da =  £  /'Jf *• " ds .t i '. *kt=°

1 (dx/dLx i +  dy/dLx j )  dNk
tide* JL>~° ds/dLx uux

where the summation is over all sides forming part of the free surface. Moreover, in 

(4.62) there is no longer a dependence on h in the limits of integration; consequently,

dLx
dLx (4.62)
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derivatives of (4.62) with respect to hi are also simplified since

—  I  l  V ' /* d ( (dx/dl>i i  + dy/dLx ¿ ) \ dNk
dhi Js(h) ~ ds SJ JLi=o dhi  ̂ ds/dLi J dL\ 1

(4.63)

Note that the integrand on the right hand side of (4.63) may be evaluated analytically 

by using the isoparametric mapping (B.40) in conjunction with the spine relation (4.51).

Now for the kinematic residuals. It can be shown that if (u j,v i), [uq, vg) and 

(U3, V3) are the fluid velocities associated with local nodes 1, 6 and 3 respectively, and 

(u, v) the fluid velocity at any point of a side forming part of the free surface, then the 

kimematic residuals (4.50) may be written more conveniently as

R{ = f  Nk n.u ds = 5Z /  Nk(L\) (v d L \  (4.64) 
Js(h) tidea \ dL\ uL\ /

where (see equation (4.7))

u — u\ N\{L\) +  uq Ng(L i ) +  U3 Nz(L\) (4.65)

v — v\ N\(Li) +  v$ +  v$ N$(Li)

The right hand side of equation (4.64) is useful because there is no longer a h dependence 

in the limits of integration. As u,-, v,-, h,- are independent parameters with duj/dhi = 

dvj/dhi = 0 for all i and j ,  derivatives of (4.64) with respect to h, are given by

k Lm **“ * = S. n(L,) (ek(k) ~ ukiw) } iL*
(4.66)

Similar expressions can also be obtained for derivatives of (4.64) with respect to u,-, v,-:

4 -  [  Nk n.uds =  £  {  -  t  Nk Ni A  <¿1,1 (4.67)
dui Js(h) l Jli=q dL\ J

A  /  Nfc n.u ds =  £  { f '  Nk N i ^ - d L t )  (4.68)dvi JS(h) U L ,=o dLi )

The results of this section show that the free surface integrals (4.49), (4.50) and the 

derivatives with respect to their associated parameters can be written as a combination 

of integrals over the region [0,1]. These one-dimensional integrals are also evaluated 

numerically using Gaussian Quadrature -  see §B.6.
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4 .4 .5  F in d in g  an  In itia l A p p ro x im a tio n

The techniques described above allow the full Jacobian matrix (4.32), containing deriva

tives with respect to the full set of F.E. coefficients aT = (§J , h?), to be evaluated. 

This brings us to the problem of finding a start-up approximation, i.e. an initial ap

proximation «o when no solutions of related cases have previously been calculated. 

This is far more difficult for a viscous free surface flow than it is for the ‘cavity-driven’ 

flows in §4.3, because neither the flow field nor the free surface location is known a 

priori.

The domain of convergence of the Newton iteration procedure, (4.31), from a so

lution with a given set of parameters (Re,Ca,etc), is a measure of the maximum 

increment that can be made to any of these parameters before the iteration diverges, 

i.e. no solution is found. For viscous free surface flows the domain of convergence 

of Newton iteration generally depends much more on position and shape of the free 

surfaces than on the flow field within the domain because the non-linearity produced 

by the free surface(s) is usually much stronger than those due to fluid inertia at modest 

Reynolds numbers (see Kistler and Scriven [1983] p 278). In practical terms this means 

that it is important for the start-up approximation ciq to have a good initial estimate 

of the free surface shape, although the domain of convergence from Oq can sometimes 

be enlarged by ‘under-relaxing’ the iteration process, i.e. by applying only fractions of 

the updating changes called for by equation (4.31).

In general, the free surface shape would be estimated from experimental observa

tions; however, in slot coating it is fortunate that published free surface profiles already 

exist (e.g. those of Saito and Scriven [1981], Carter [1985]). In this study the first so

lution to slot coating was obtained by approximating the grid to the solution given in 

Carter [1985] for the case of Re =  0.0, Ca =  0.4, q =  0.25

Once the first converged solution is obtained the calculation of related solutions for 

nearby parameter values or boundary configurations is much easier. This is achieved 

by zero order continuation, i.e. using the solution for one set of parameters in order to 

begin Newton iteration for a not-too-dissimilar set of parameters.



Chapter 4: The Development o f  the Free Surface Code 125

4 .4 .6  R e su lts  a n d  D iscu ss io n

All the slot coating results presented here have been obtained using the F.E. grid 

shown in Figure 4.7 in which (following Carter [1985]) the polar origin O, used to 

define the tessellation of region 2, is placed at (-0.5, 1 .0). Changing the number of 

quadrature points (see below) had only a minor effect on the execution time required 

for an iteration, each iteration taking approximately 20 c.p.u. seconds. During each 

iteration the Galerkin F.E. equations (4.31) were solved by the NAg F.E. ‘banded- 

matrix’ solver; most converged solutions were obtained in 4 or 5 iterations.

Before accepting any results there are three key issues to be addressed. The first 

o f these is the effect on the solution of the Gaussian quadrature scheme chosen to 

evaluate the free surface integrals. Converged solutions were obtained for parameters 

set to Re =  0.0, Ca =  0.4, q =  0.25 in which the area integrals were evaluated using 

the 4 point quadrature scheme (A) and the free surface integrals using each of the 2-, 

3-, 4- point quadrature formulae, i.e. schemes (a), (b), (c) respectively of Appendix B, 

for one-dimensional integrals. Computed results show that in changing from a 2- to the 

3- point scheme, the maximum change in any coefficient was less than 1% ; whereas in 

changing from a 3- to the 4- point scheme, the maximum change was less than 0.01%. 

In both cases there was no discernible change to the free surface profiles.

The second issue relates to the evaluation of the area integrals. Converged solutions 

for Re =  0.0, Ca =  0.4, q =  0.25 were obtained by using the 3 point scheme (b) for free 

surface integrals and each of the four quadrature schemes (A), (B), (C), (D) for area 

integrals described in Appendix B. The computed results showed that in changing (i) 

scheme (A) —> (B), (ii) (A) —► (C), the maximum change in any coefficient was less 

than 1%,0.3% respectively, both of which had no appreciable effect on the free surface 

profile obtained. However when scheme (D) (with one negative weight) was used, no 

converged solution to this problem could be found. This is contrary to what might be 

expected, given the good agreement between analytical and numerical results (using 

scheme (D)) reported in §§4.3.1, but it suggests that rounding errors incurred when 

scheme (D) is used (see §2.3) are exacerbated by the presence of a free surface. Given
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the above results it was decided to calculate all subsequent numerical solutions using 

the 4 point scheme (A) for area integrals and the 3 point scheme (b) for free surface 

integrals.

Returning to the boundary conditions for the slot coater, the inflow and outflow 

conditions are, in theory, applied at an infinite distance upstream/ downstream of the 

separation point P respectively. In practice, of course, they are imposed at a finite 

distance from P. It is, therefore, very important to check the sensitivity of computed 

solutions to the positions of the inflow/ outflow boundaries. An initial investigation 

confirmed Carter’s [1985] observation that the results are not sensitive to the upstream 

end of the grid but that the length of the grid in the downstream direction is important. 

A grid extending over -1 6  < x < 1 was found to be adequate for the range of parameter 

values considered here.

Figure 4.9 shows velocity vectors and free surface profiles for a flow with Re = 

0.0, Ca =  0.4, q =  0.25 obtained (a) in this work (b) in Carter [1985]. The free surface 

profiles are in very good agreement. Carter’s results were, however, obtained using a 

variational method limited to the creeping flow case, unlike those of Saito and Scriven 

[1981] which were obtained using a version of Galerkin’s method of weighted residuals 

similar to that described here, but with quadrilateral as opposed to triangular elements. 

For this reason it was deemed more appropriate to compare the results of this work 

with those of Saito and Scriven [1981]. Figure 4.10 shows the dependence of free surface 

profiles on the Capillary number for the case of Re =  0.0, q =  0.25 for (a) this work,

(b) Saito and Scriven [1981]. These profiles are in excellent agreement in all cases; the 

effect of increasing Ca is to make the free surface recede into the gap.

An appealing feature of the Galerkin F.E. method is that it is capable of solving 

the full Navier-Stokes equations with fluid inertia, i.e. at non-zero Reynolds number. 

Figure 4 .11  shows a comparison between velocity vectors obtained in this section and 

those predicted by Saito and Scriven [1981] for slot coaters with (a) Re =  50, Ca = 

0.125, q =  0.13, (b) Re =  50, Ca =  0.125, q =  0.25; excellent agreement is obtained 

in both cases. Figure 4.12 investigates the effect of changing the liquid flux in slot 

coating, with Re =  50 and Ca = 0.125 constant. Once again, the results from this
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work are in excellent agreement with those of Saito and Scriven in all cases. They show 

that decreasing q has the effect of increasing the free surface curvature, until the free 

surface profile eventually recedes past the separation point P and into the gap.

In all the computed solutions presented here, the contact angle between the free 

surface and upper plate at P is determined as part of the solution. Michael [1958] 

studied the problem of the separation of a viscous free surface at a straight edge and 

from his analysis he concluded that for the viscous stress to be bounded at the point of 

separation, the contact angle a = 180°. The ‘apparent’ contact angle, i.e. the contact 

angle observed macroscopically, does not satisfy this condition in any of the computed 

solutions. Kelmanson [1983] postulated that the contact angle changes rapidly from 

180° to the observed value over a small distance 8 say. However this hypothesis defies 

intuition when the meniscus recedes past the separation point P and into the nip (see 

e.g. Figure 4.11, case (a)). A recent analysis by Savage [1992] predicts 2 possible 

contact angles, namely a = 0° and a =  180°, of which the former is more sensible 

when the meniscus recedes into the slot. Unfortunately, a more detailed understanding 

of the separation process is required before a satisfactory study of the region can be 

completed.

Despite all the complications described above, slot coating is a simple example 

of a coating flow because there is no flux splitting, dynamic wetting lines or awkward 

geometry in which the solution is to be found. Fully-flooded roll coating is more difficult 

to analyse and is considered next.

4.5 The Symmetric, Fully-Flooded, Forward Roll Coater

4 .5 .1  In tr o d u c tio n

In the previous section we obtained numerical solutions of the slot coating problem, 

which are in excellent agreement with previously published solutions, by incorporating 

the ‘spinal’ free surface representation into a generalised version of Galerkin’s weighted 

residual F.E. method. However, as the raison d’etre of the present chapter is to establish 

the expertise needed to develop a numerical model for meniscus roll coating which
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includes the effects of curved meniscii, it is now necessary to tackle the more challenging 

roll coating problem.

Owing to its relative simplicity, we consider the symmetric, fully-flooded, forward 

case first. As we shall see, the problem of representing the free surface is complicated, 

even in this relatively simple case, by the sensitivity of the downstream free surface 

location to the values of the operating parameters, and particularly to that of the 

capillary number. In such situations, Coyle et al [1986] showed that the key to resolving 

this difficulty lies in the adoption of a mesh generation algorithm in which all elements 

depend on the free surface location.

In the present section we obtain numerical solutions of Coyle et al’s [1986] model 

for the symmetric situation by extending the slot coating code, developed above, to 

include a mesh generation algorithm similar to those described by Coyle et al [1986]. 

The salient features of their model and mesh generation algorithm are described in 

detail in the next section.

4 .5 .2  C oy le  e t  a l’s [1986] M o d e l

In the symmetric case, the rollers are of equal radii and move with equal speeds in the 

same direction through the nip. In their F.E. analysis of this situation, Coyle et al 

introduced dimensionless variables defined by

x = X/yf(RH0) , y =  Y/JiRHo) , p = p fiR H oyrjV  (4.69)

u = U/V , v = V/V (4.70)

where (X , Y ), ([/, V ), P, V , R, Ho are the global co-ordinates, global liquid veloci

ties, liquid pressure, speed of each roller, roller radius, and semi-nip width respectively. 

Since the problem is symmetric, it is possible to reduce the cost of computations by 

restricting attention to the flow in the lower half of the domain, i.e. between the sym

metry plane and lower roller. The boundary conditions for this ‘half-problem’ , which 

are shown in Figure 4.13, are discussed below.
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(i) On the Symmetry Plane

Both the vertical component o f liquid velocity and the shear stress will vanish,

v =  0 , (n.£)x =  0 (4.71)

The first condition is an essential boundary condition and is imposed in the usual way; 

the zero shear stress condition is imposed by the method described in §§4.3.2, 4.3.3.

(ii) At the Roller Surface

The no-slip condition yields an essential condition on liquid velocity: u =  t where t is 

the unit vector tangential to the roller surface.

(iii) At the Free Surface

The usual kinematic and stress boundary conditions are imposed by the techniques 

described in §§4.4.2, 4.4.3.

(iv) At the Outflow Boundary

In slot coating, the flux was imposed as a parameter. Fully-flooded roll coating is differ

ent since the flux through the nip has to be determined as part of the solution. In such 

cases Kistler and Scriven [1983] found that the imposition of a uniform ‘plug’ flow con

dition at outlet could lead to conflicts with overall mass and momentum conservation, 

unless the outflow boundary is placed far downstream. Unfortunately, this course of 

action can lead to computational costs becoming excessive. Kistler and Scriven [1984] 

and Coyle et al [1986] found that a suitable alternative is to use the ‘no-traction’ condi

tion, n.o =  0, at the outflow boundary. They found that this condition, which may be 

interpreted physically as specifying that there should be no diffusive momentum flux 

in the streamwise direction (Kistler and Scriven [1984]), may be applied closer to the 

main body of the flow without appreciable loss of accuracy. Indeed this is borne out 

by the author’s own experience.

The no-traction condition is imposed by deleting the term / 9n Nk n.qcLs from the 

momentum residuals (4.15) associated with the nodes on the outflow boundary (see 

equation (4.47)). As a result the boundary term at these nodes is simply given by 

/an  -W* Re(u.n)uds, which is non-zero in general since u.n £  0 at an outflow boundary.
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(v) At the Nip

In §1.2 we noted that the lubrication approximation provides an accurate description of 

the flow in the nip region during fully-flooded forward roll coating, see e.g. Greener and 

Middleman [1975], Savage [1992]. Coyle et al [1986] used this fact to derive boundary 

conditions at the nip which enable the computational domain to be reduced further; 

their analysis is summarized below.

If the dimensionless co-ordinates (x ,y ) are chosen so that y =  0 on the symme

try plane and x = 0 at the nip, it is both valid and convenient to approximate the 

dimensionless half-gap width, h(x), by a ‘parabolic approximation’

y - - * < • ' - - ( f ) *  ( ' * î ) (4.72)

Moreover by introducing transformed spatial co-ordinates 6, 77, a modified dimension

less pressure, p*, and the dimensionless flux A where

y +  h{x)
6 =  tan \xjy/2) , 77 =

V -  p-
Eo A =

h(x)
Q

(4.73)

(4.74)
R ' 2VHo

it may be shown that, in the limit of the lubrication approximation, the balance of

x-momentum reduces to

—  = fi j. ìli ^JL 
drj2 l 2 J dx (4.75)

Now, the no-slip condition at the roller surfaces gives u(tj = 2) = 11(77 =  0) =  1, so 

integrating (4.75) twice with respect to 77 gives

„  = i  ( i  + (4.76)

When this velocity profile is substituted into the following rearranged expression for 

the dimensionless flux

we obtain
dp*
dx

A = 1 +

( l  +  x2/ 2)3

/  u dp 
Jo

[1 + x2/2 -  A]

(4.77)

(4.78)
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At this stage of the analysis, it is convenient to re-express (4.76) and (4.78) in terms of 

0, the transformed x co-ordinate, which yields

— A cos2 0)(r72 — 2rj) +  1 (4.79)

II 3\/2(cos2 0 — A cos4 0) (4.80)

In fully-flooded forward roll coating, it is usual to assume that the pressure in the liquid 

decays to atmospheric far upstream of the nip, i.e. p*(—f )  =  0, so integrating (4.80) 

subject to this condition yields

p’ /3v/2 =

Hence, at the nip (0 = 0)

(4.81)

(4.82)

Therefore the boundary conditions at the nip in terms of the F.E. variables are

* ) (» ’  ■-  2t?) +  1 (4.83)

0 (4.84)
2y/2* R ( 3A\ (4.85)

4 Hq \ - t )

Expressions (4.83), (4.84) are essential conditions on the liquid velocity and are imposed 

in the usual way. Condition (4.85) is different, its implementation will be discussed 

later.

(vi) At the Symmetry Line P

The symmetry of the problem means that at the symmetry line P, formed where the 

symmetry plane meets the downstream free surface, the following conditions apply: 

(i) the liquid velocity is zero, i.e. P is a stagnation line, (ii) the free surface slope is 

vertical. The former are essential conditions on the liquid velocity, u = v =  0, and 

are imposed in the usual way, whereas the latter condition is different. In practice it 

is imposed in the form i.t =  0, where i is the unit horizontal vector and t is the unit 

tangent vector to the free surface at P, calculated in terms of those F.E. variables which 

specify the position of the downstream free surface (see next section).
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4.5.3 The Computational Mesh For the Symmetric Forward Roll 

Coater

The task of choosing a mesh generation algorithm for the forward roll coater is com

plicated by the fact that the (downstream) free surface location is much more sensitive 

to variations in the operating parameters (particularly the capillary number Ca) than 

in the slot coater. This characteristic means that if a spinal free surface representation 

similar to the one employed in §§4.4.3 for the slot coater, with fixed base points x 'b  

and direction vectors e,-, is used to represent the downstream free surface of a forward 

roll coater, elements within the grid may become distorted from their triangular shape 

when the operating parameters are varied. It is important to avoid element distortion, 

if possible, because it can have a seriously detrimental effect on a numerical solution’s 

accuracy (see later, §§4.5.5). Since, in the author’s opinion, there is inadequate cover

age of the practical problems caused by meshing a forward roll coater in the literature, 

we devote this section to a detailed description of a mesh generation algorithm which 

can limit element distortion in forward roll coating. The mesh generation algorithm 

described here forms the basis of the F.E. grids used in all the solutions which remain 

to be presented in this thesis.

The first solution to symmetric forward roll coating which was attempted here (for 

a flow with parameters Re = 0.0, Ca = 0A,R/Hq =  100) employed the tessellation 

shown in Figure 4.14; it consists of 102 elements, 245 nodes with 21 spines and 21 free 

surface nodes. Spine 1 is horizontal and lies on the plane of symmetry between the base 

line X  M  and the symmetry line P. In practice it is more convenient to parametrise the 

film-split location P in terms of the position of the line X M  (whose x co-ordinate is 

■Xm) rather than with the value of hi, the spine height associated with spine 1. This 

means that the value of hi is fixed and X m is the film-split location parameter which 

needs to be determined instead.

The grid is split up into two regions: regions 1 and 2 consist of all nodes upstream 

and downstream of the base line X M  respectively. Element distortion in region 1 is 

alleviated by defining the x co-ordinates of all nodes in this region to be fixed frac
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tions of the (current) value of X m. This prescription results in the elements in region 

1 undergoing a ‘concertina’-type motion as the value of X m changes throughout an 

iteration. This is illustrated in Figure 4.14, in which there is a series of 14 vertical lines 

upstream of X M  on each of which lie 7 nodes evenly distributed between the symmetry 

plane and the bottom roller. For reasons of clarity, the positions of the vertical lines 

are represented below the roller surface.

In region 2 the positions of all nodes are parametrised by the base line X M  and a 

series of free surface spines {h ,}. As in regions 1 and 2 of the slot coater (see Figure 

4.7), each node lies on a free surface spine defined by the position of its base node 

x'B and a direction vector e,; once again h, represents the distance along the tth spine 

between its base and free surface nodes. There are a total of 7 nodes, i.e. including 

the base and free surface nodes, on each spine whose distances along the spine from 

the base nodes are prescribed proportions wj of h,; in this thesis wj= 0, 1/6, 1/3, 1/2, 

2/3, 5/6 and 1.

The first 7 spines have their base points evenly distributed along X M  between the 

symmetry plane and the roller surface. Their direction vectors are parallel to lines 

drawn from their base points to a polar origin O which lies on the plane of symmetry 

outside the liquid. The x co-ordinate of O is chosen to be a fixed increment from 

X m, with the result that its position also changes throughout the iteration; the actual 

increment used has to be specified in the mesh generation algorithm (see later). The 

remaining spines, in this case spines 8 to 2 1 , have their base points on the lower roller 

at positions whose x co-ordinates are fixed increments of the current value of X m\ the 

values of these increments also need to be specified in the algorithm. In subsequent 

sections, it will be seen that the choice of direction vectors for these spines is the most 

troublesome feature of the discretisation. At present this can only be done by empirical 

means, the best guide being visual observation, and must be tailored to the particular 

problem of interest.

There are many differences between this grid and the one used in slot coating; they 

are (i) the positions of the base nodes and direction vectors of free surface spines are 

functions of X m and change during an iteration; (ii) all elements depend on the free
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surface position; (iii) the only nodes whose positions are fixed are those at the nip, all 

the others are functions of X m.

An initial estimate for the first solution attempted here (for the parameter set 

Re =  0.0, Ca =  0.1, R/Hq =  100) was obtained by matching the free surface profile 

to a solution published by Coyle et al [1982] for the same set of parameters. After 

visual observation it was decided to use the grid shown in Figure 4.14, in which the 

parameters for the mesh generation algorithm described above should be as follows:

(i) the x co-ordinate of the 14 vertical lines of nodes upstream of X M  are located 

at FRAC(I)x.Xm, where FRAC(I)= 0, 1/14, 1/7, 3/14, 2/7, 5/14, 3 /7 ,1 /2 , 4/7, 

9 /14 ,5 /7 , 11/14, 6/7 and 13/14.

(ii) the x co-ordinates of the base nodes of spines 8 to 21 are at ,Xm+XINC(I), where 

XINC(I)=0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.375, 0.45, 0.525, 0.6, 0.8, 1.0, 1.2 and

1.4

(iii) h\, the distance between X M  and P, should be fixed and equal to 0.4.

(iv) the distance between X M  and the polar origin O is set equal to 1.0

(v) spines 8 to 17 are made to pass through the polar origin O, and spines 18 to 21 

are made normal to the roller surface.

The specification of (i)-(v) completes the mesh generation algorithm for the grid shown 

in Figure 4.14. All the grids subsequently used to solve symmetric forward roll coating 

are based on this tessellation; the only differences being in (i) the number of vertical 

lines of nodes upstream of X M  (and consequently the values of FRAC(I)); (ii) the 

number of free surface spines; (iii) the values of XINC(I) and the directions of their 

associated spines.

The equation set for the symmetric forward roll coater is slightly different from that 

obtained for the slot coater since the film-split location and dimensionless flux must 

also be determined. The kinematic residual associated with P would normally provide 

the equation needed to determine X m (which has replaced hi as the film-split location 

parameter); however, in this case the kinematic condition, u.n =  0, is automatically
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satisfied at P since it is a stagnation point. Hence another equation is needed to 

replace this kinematic residual. This extra equation is provided by the symmetry of 

the problem which implies that the free surface must be vertical at the symmetry line 

P. Hence

i.t = 0 at P (4.86)

where i is the unit horizontal vector and t is the unit vector which is tangential to the 

free surface at P. In the mesh generation algorithm described here, t is a function o f the 

film-split parameter X m and the 3 spines associated with the element shown in Figure 

4.15, i.e. h\, hi and /13. This enables (4.86) to be rewritten in the form of a residual, 

R»ymmetry (X m, h\, hi, h3) =  0, as is required in Galerkin’s F.E. method.

One more equation is needed to enable the dimensionless flux A to be evaluated. 

This is provided by the lubrication theory nip pressure condition (4.85). Following 

Coyle et al [1986] this is modified to

3 r  Ä / ,  31\
(4.87)

where p is the average of the F.E. pressures at the nip, evaluated using the pressure 

shape functions 0/. Since the grid of Figure 4.14 has 3 elements evenly spaced across 

the bottom half of the nip -  see Figure 4.16 -  with pressure freedoms p\, p3, p3, pi at 

nodes 1, 3, 5, 7 respectively, it can be shown that equation (4.87) yields

(Pi +  2p3 +  2ps + P7) 3 K  R ( .  3A\
-------------- è = l 1 ’  T J

(4.88)

Equation (4.88) is also rewritten in the form of a residual R\{p\,P3,ps,P7, A) =  0 and 

inserted into the row of the Jacobian (4.32) associated with the unknown A. When 

allied to the F.E. equations for the velocity and pressure freedoms and the kinematic 

residuals associated with spines 2 to 21, (4.86) and (4.88) close the equation set.

It is important to realise that not all of the F.E. coefficients for this problem, 

given by a T = (uT, trr ,£T, hT,X m, A), are independent. For example, the velocities 

associated with nodes on the roller surface, at which u = t, are specified by the value of 

the film split parameter X m. Consequently the momentum residuals (4.15) associated 

with these velocity freedoms are no longer required, so in practice we discard these
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residuals and rewrite derivatives with respect to these velocities in terms of derivatives 

with respect to X m. Similarly the horizontal velocity freedoms associated with those 

nodes at the nip, which assume values given by equation (4.83), are also dependent 

freedoms because they are functions of the dimensionless flux A.

Once again, the F.E. equations (4.31) are evaluated by assembling all the element- 

level contributions. Before describing the numerical solutions obtained by solving these 

equations, it is instructive to examine the structure of the element-level Jacobian, J®, 

for the symmetric forward roll coater since it is identical to all those which arise in all 

subsequent roll coating problems considered in this thesis.

4.5.4 The Structure of Element-Level Jacobians in Forward Roll 

Coating

We begin by describing the structure of the element-level Jacobians, Jf, which arise 

in numerical solutions of symmetric forward roll coating. It is important to realise 

that the number of residuals and F.E. coefficients associated with a particular element 

varies according to its position within the grid shown in Figure 4.14, although there 

are features common to all elements.

For example, all elements depend on the value of X m, the film-split parameter, and 

have associated with them ue, v® and p®, the velocity and pressure freedoms (e is the 

element number), and 7?£, 7?®, 7?^, the contributions to the x and y components of 

the momentum residuals (4.15) and continuity residuals (4.27) arising from integration 

over that element or its edges. As a result of this dependence, the Newton iteration 

procedure (4.32) requires the evaluation of the derivatives of J2|, 72* and T?  ̂ with 

respect to «*, v®, pe and X m -  see Figure 4.17.

If, however, the element lies downstream of the base line X M , it is also necessary to 

evaluate derivatives of 72£, 7?* and R*c with respect to the (three) spine heights, h* say, 

on which it also depends (see equation (4.51)). Moreover in the special case in which 

one of its sides forms part of the the free surface (see Figure 4.8), it also contibutes to 3 

kinematic residuals 7?£ which means that it is necessary to evaluate these contributions 

and their derivatives with respect to the associated velocity freedoms ue, ve. The
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situation is different when the element touches the nip instead of the free surface. In 

this case the element is associated with the lubrication nip pressure condition (4.88) 

and consequently its Jacobian must also contain derivatives with respect to A.

Finally, consider the free surface slope condition i.t =  0. This condition only 

affects the element-level Jacobian of the element shown in Figure 4.15, which means 

that only its Jacobian contains derivatives of i.t with respect to X m, hi, /12 and hj. The 

most general form of an element-level Jacobian arising in the symmetric forward roll 

coater (with triangular V6/P3 elements) is shown in Figure 4.17. The above discussion 

shows that Figure 4.17 contains every conceivable type of contribution to an element- 

level Jacobian for elements in the grid shown in Figure 4.14. The reader is referred to 

Kistler and Scriven [1983] pp 270-272 for a description of the element-level Jacobians 

which arise when V9/P4 elements (see Figure 4.1) axe used.

The fact that the entire mesh adjusts with the free surface position has one im

portant effect on the structure of the equations (4.31) for forward roll coating: .they 

are no longer ‘banded’ in the sense described in Appendix C, since in every row of the 

Jacobian (4.32), except that associated with the residual R\ (equation (4.88)), there is 

a non-zero contribution due to a derivative with respect to X m. Consequently, there 

is no longer a storage saving accruing from the use of a banded-matrix solver, as there 

has been in all problems solved up to now. This constitutes an unacceptable constraint 

on the size or problem that can be solved by this technique and for this reason it is 

necessary to implement an alternative technique to solve equation (4.31). Fortunately, 

the Frontal Solution Method, described in Appendix C, (see also Kistler and Scriven 

[1983], Carter [1985]) does not suffer from the bandedness constraint and is therefore 

suitable for the present application. Although requiring a significant investment in time 

to implement it, the Frontal Method offers many advantages over the banded-matrix 

technique, including (i) the ability to solve problems in which the storage requirement 

would otherwise be excessive; (ii) reductions of up to 80% in computational costs. In

deed such is its suitability that the Frontal Method is used to solve the F.E. equations 

in this and all subsequent free surface problems.

A condensed flow chart for the code used to solve this problem, in which the F.E.
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equations are solved by the Frontal method, is shown in Figure 4.18. Zeroth order con

tinuation is used, i.e. the iteration is begun with a , ,  a converged solution corresponding 

to a set of parameters which are ‘close’ to those for which a solution is desired.

4.5.5 Results and Discussion

The first solution to symmetric, fully-flooded, forward roll coating attempted here was 

for the parameter set Ca =  0.1, Re = 0.0, R/Ho =  100 and used grid (a) of Figure 

4.19. An initial investigation confirmed that the outflow boundary was sufficiently far 

downstream so that the solutions were insensitive to changes in its position. To test 

the sensitivity of the calculated flows to the discretisation used, solutions were obtained 

using the 3 grids shown in Figure 4.19. Grid (a) is that shown in Figure 4.1/^ with 102 

elements, 245 nodes and 21 spines; grid (b) has 132 elements, 315 nodes and 21 spines; 

and grid (c) has 208 elements, 477 nodes and 23 spines. In all cases, converged solutions 

were obtained from a start-up approximation after 5 iterations, each iteration taking 

10, 12 and 14 c.p.u. seconds when grids (a), (b) and (c) were used respectively. The 

most sensitive variables, namely the film-split location and the pressures at the nip, 

changed by less than 0.1% in changing from grids (a )-(c) which indicates that all 3 

grids give sufficiently accurate solutions. In fact all the numerical results presented in 

this section employ grid (b) as the computational mesh.

Figure 4.20 shows a comparison between solutions obtained for flows with Re — 

0.0, R/Ho = 100 and Ca — 0.1, 0.2, 0.5 for (a) this work, (b) those presented in Coyle 

et al [1982] using quadrilateral elements. Unfortunately the velocity vectors are difficult 

to interpret, but an inspection of the velocity fields reveals the gradual disappearance 

of eddies near the downstream free surface as Ca increases from 0.1 to 0.5. This 

prediction agrees well with the results presented by Coyle et al [1982]. Figure 4.21 

shows the dependence of the free surface profiles on the Capillary number for Re =  0.0 

and R/Hq =  100; the units of the vertical scale are in terms of Ho, the semi-nip width. 

The results of this work are in excellent agreement with those previously obtained by 

Coyle et al [1982],

So far, no mention has been made of the F.E. pressures which are generated in
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any solution. This may now be rectified by considering the pressures generated on 

the plane of symmetry in symmetric, fully-flooded, forward roll coating. In Figure 4.22 

pressures upstream of the nip (x <  0) have been obtained from the lubrication theory of 

§§4.5.2, whereas those downstream of the nip have been generated by the F.E. method. 

These dimensionless pressures have been converted to physical pressures (pounds per 

square inch) in the case in which viscosity rj =  1 x 10~x Nm~2s and surface tension 

T  — 6 x 1Q~2N m "1; the horizontal scale is that of Ho, the semi-nip width. The pressure 

profiles predicted by F.E. theory seem to match well those of lubrication theory and 

exhibit the characteristic pressure maximum/minimum profile observed in roll coating 

-  see Chapter 5. The profiles obtained in this work (with triangular elements) agree 

well with those of Coyle et al [1982] (quadrilateral elements).

In their experiments on symmetric fully-flooded forward roll coating, Pitts and 

Greiller [1961] measured the position of the downstream mensicus and tabulated the 

ratio, cto> of the vertical roller separation at the symmetry line P (see Figure 4.13) 

to the nip width, 2Hq, for flows with a range of capillary numbers Ca and geometric 

parameters R/Hq. Their experiments showed that oo is sensitive to the value of Ca, 

but almost independent of R/Ho. In Figure 4.23 their experimental data is compared 

with theoretical predictions of <7o by the F.E. method with Re =  0.0 and the geometric 

parameter R/Ho =  100. The experimental results and theoretical predictions agree 

well over this range of Ca. Note that Figure 4.23 does actually provide a reliable 

comparison between theory and experiment since predictions of oq (at Re — 0.0) over a 

range of values of R/Ho agreed with Pitts and Greiller’s observation that <ro is almost 

independent of R/Ho.

The final results presented here pertain to the prediction of the dimensionless flux 

A as a function of Capillary number and geometrical parameter R/Ho for Re =  0.0. In 

Figure 4.24 F.E. predictions of A obtained here (with triangular elements) for Re =  0.0 

and R/Hq = 100, 1000 are compared with those of Coyle et al [1986] (quadrilateral 

elements); note that the circles (o) in Coyle et al’s'results relate to their asymptotic 

solution, valid in the limit R/Ho —► oo. The F.E. predictions are in good agreement 

and predict that 1.3 < A < 1.4, which corresponds well with the experimental data
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of (i) Pitts and Greiller {1961] (1.26 < A < 1.38), (ii) Benkreira et al [1981] who 

found an average value of A (based on 1500 experiments, with a standard deviation of 

0.4%)=1.31. However, a conspicuous feature of Figure 4.24 is that no results are shown 

for the case of R/Ho =  100 and Ca < 0.03; this omission will now be explained as it 

illustrates an important difficulty in analysing flows with highly curved meniscii.

All the solutions shown in Figure 4.24 were easily obtained by zeroth order con

tinuation from the first converged solution. Unfortunately, converged solutions for 

flows with Re = 0.0, R/Ho = 100 and Ca < 0.03 could not be obtained by sim

ply performing zeroth order continuation on the capillary number Ca. In a second 

attempt at obtaining solutions in this range, zeroth order continuation was carried 

out on the geometric parameter R/Ho, beginning with the converged solution for 

Re =  0.0, Ca — 0.01, R/Ho =  1000. This also failed when R/Ho was decreased 

below 400. After inspecting the computational grids of solutions in this range, the 

author has formed the firm opinion that these convergence difficulties are caused by 

element distortion in the downstream region (i.e. region 2) of the computational mesh. 

Typical element distortions are illustrated in Figure 4.25, which shows elements in re

gion 2 for converged solutions with parameters: (a) Re = 0.0, Ca =  0.03, R/Hq = 100; 

(b) Re =  0.0, Ca =  0.01, R/H0 = 400; (c) Re =  0.0, Ca =  0.01, R/H0 = 1000. These 

elements exhibit two kinds of distortion (i) a high ‘aspect ratio’ (i.e. ratio of the max

imum and minimum lengths of an element’s sides), (ii) loss of element triangularity. 

The author’s experience suggests that the latter is the primary cause of convergence 

difficulties, whereas the former has a deleterious effect on the solution’s accuracy. In 

fact the observation that the accuracy depends on the aspect ratio of elements used 

has been proved theoretically -  see Chung [1978] p 133-138.

At this point one may think that employing quadrilateral rather than triangular 

elements could alleviate these convergence difficulties because Coyle et al [1986] have 

obtained converged solutions for Re =  0.0, R/Ho =  100, Ca =  0.01 with the former. 

However this is debatable because Coyle et al [1986] have also reported convergence 

difficulties with quadrilateral elements; their success in obtaining solutions in this pa

rameter range is probably due to greater skill in tessellating grids of this kind rather



Chapter 4: The Development o f  the Free Surface Code 141

than an intrinsic superiority of the quadrilateral element. Even though these obser

vations do not enable the errors in a numerical solution to be quantified, they are 

nevertheless useful diagnostics since they suggest when the accuracy of a numerical 

solution should be questioned and, if possible, the computational grid refined.

Although the convergence difficulties experienced here could be remedied by packing 

more elements into the grid in region 2 or changing the the relative orientation of the 

downstream spines, convergence problems are an unavoidable feature of the remainder 

of this thesis. This is because the mesh generation algorithms used above, which 

are relatively primitive, are only suitable over a limited parameter range and should 

therefore be tailored to the parameter range of interest. The inescapable conclusion 

from this discussion is that it is unwise to accept the accuracy of a F.E. solution if any 

elements in its computational grid exhibit the two kinds of distortion described here.

4.6 The Asymmetric Fully-Flooded Forward Roll Coater

4.6.1 Boundary Conditions and Computational Mesh

In this section, the theory developed for the symmetric forward roll coater is extended 

to tackle the asymmetric problem. For convenience it is assumed that the asymmetry 

is introduced by having different roller speeds and that the radii of the upper and lower 

rollers are equal. Before describing the relevant boundary conditions, it is necessary to 

describe the computational meshes used for the asymmetric problem.

Since the flow is asymmetric, it is no longer possible to solve the problem in a 

half-domain, so the entire flow domain must be tessellated into elements. Quite simply, 

the nodal co-ordinates in the upper half of the mesh are generated in exactly the same 

way as the lower co-ordinates. As before, the entire grid is specified by a base line 

X M , spine heights h and the algorithmic parameters FRAC(I), XINC(I). This is best 

explained by inspecting the mesh shown in Figure 4.26. Although, in the asymmetric 

case, the plane which is equidistant from both rollers is no longer a plane of symmetry, 

it is still convenient to fix the spinal height associated with the spine which lies on 

it. This enables the film-split location to be specified in terms of X m alone, as in the
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symmetric case.

The boundary conditions for the asymmetric problem are shown in Figure 4.27. 

At the roller surface, free surface and outflow boundaries the usual no-slip, kinematic, 

stress, and zero traction conditions respectively are applied. The non-dimensionalisation 

used in this instance is, however, slightly different from that given by equations (4.69), 

(4.70). As in §§4.5.2, lengths are scaled by y/(RHo) where R = R\ = R2 is the radius 

of each roller and Ho the semi-nip width, but in the asymmetric problem it is more 

appropriate to scale velocities and pressures by V = (Vj + V2)/2 (the average roller 

speed) and rjV/y/[RHa), respectively and define a generalised dimensionless flux A, 

where

A Q
2VH0

(4.89)

Once again, the origin of the dimensionless (x, y) co-ordinates is placed at the centre 

of the nip so that the upper and lower rollers are at y = ±h(x) respectively where h(x) 

is given by (4.72), and the transformed spatial co-ordinates (0,Tj) are given by (4.73).

It can be shown (Coyle et al [1986]) that a lubrication analysis exactly analagous 

to that described in §§4.5.2 yields the following boundary conditions at the nip

u

v

P

- ( !  -  A)(?72 — 277) + ( 5 - 1 )
V +( 5 +  1) ' ( 5 + 1 )

4 Ho V 4 ;

(4.90)

(4.91)

(4.92)

where 5 = V2/Vi is the velocity ratio of the rollers and A is given by (4.89). Note that 

the no-slip conditions at the roller surfaces are

2 25
a ( ,  = 0) = (TTi)4 ’ a ( ,  = 2) = ( I + s)1 (4'93)

where t is the unit vector tangential to, and in the same direction as, the motion of 

the roller surface. Equations (4.90), (4.91) and (4.93) yield essential conditions on the 

velocity of the liquid which are imposed by the methods described for the symmetric 

case. The lubrication theory nip pressure condition (4.92) is also imposed in the form 

given by equation (4.88) in §§4.5.3, but note that in this case p refers to the average 

pressure across the entire nip.
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Finally, note that the asymmetry of the problem means that the flow is no longer 

symmetric about the plane equidistant from the roller surfaces. Consequently, the 

stagnation and slope conditions (4.86) are no longer applicable at the free surface node 

which also lies on this plane (formerly the node at P in Figure 4.13). Instead the 

equation needed to determine the value of the film-split parameter, X m, is provided by 

the kinematic residual (4.50) associated with this node, thereby completing the equation 

set for an asymmetric, fully-flooded, forward roll coater. In all solutions presented in 

the following section, equations (4.31) are solved by the Frontal Method.

4.6.2 Results and Discussion

The first solution attempted using the newly developed asymmetric code was actually 

for the symmetric case of S =  1, Re =  0.0, Ca = 0.1 and R/Hq =  100. This was a 

convenient initial problem since the half-domain solution for the same set of parameters 

provided an excellent start-up approximation for the free surface shape and flow field. 

The solution was obtained using the grid shown in Figure 4.26 which consists of 204 

elements, 469 nodes and 41 spines -  the earlier convergence study of §§4.5.5 suggests 

that this grid is sufficiently refined for this problem. A converged solution was obtained 

from the start-up approximation after 2 iterations, each iteration having an execution 

time of approximately 20 c.p.u. seconds.

The numerical results obtained using the full asymmetric grid were in excellent 

agreement with those from the corresponding half-domain solution. In fact the maxi

mum change in any F.E. coefficient between the two solutions was less than 0.01% of its 

previous value, which provided strong evidence to suggest that the modifications that 

had to be made to the symmetric code to enable it to solve the asymmetric problem 

had been implemented correctly.

Figure 4.28 shows F.E. predictions of the film thickness ratio T\!T% (ratio of upper 

to lower film thicknesses) for Ca =  oo and R/Hq =  200 as a function of velocity ratio 

5 , obtained by zeroth order continuation on S and Ca from the above initial solution. 

The F.E. grid used in these solutions has the same mesh generation algorithm as the 

one shown in Figure 4.26. Note that the results are presented on a logarithmic scale to
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facilitate a convenient comparison with Coyle et al’s [1986] F.E. results and Benkreira 

et al’s [1981] experimental correlation (equation (1.8)). As in Figure 4.24, the circles (o) 

relate to Coyle et al’s asymptotic solution for the limiting case of parallel roller surfaces, 

i.e. R/H0 —► oo. The results from this work (obtained using triangular elements) agree 

reasonably well with those of Coyle et al [1986] (quadrilateral elements) and Benkreira 

et al [1981], and moreover seem to support their proposal that T1/T2 oc S0,65 for 

1 < 5  < 10. Unfortunately it was not possible to obtain converged solutions for 

5  > 6.75 using the grid shown in Figure 4.26. The computational grids for converged 

solutions with (a) Re =  0.0, 5 = 1 ,  Ca =  00, R/Ho =  200, (b) Re =  0.0, 5  = 

6.75, Ca =  00, R/Ho =  200 are shown in Figure 4.29. In view of the discussion of 

§§4.5.5, since the grid for 5  = 6.75 is severely distorted, the convergence difficulties 

experienced here are probably due to element distortion.

4.7 Conclusions

In this chapter we have developed a computer code for solving free surface flow problems 

by combining Galerkin’s weighted residual method with Kistler’s ‘Spine Method’ of 

representing a free surface. In most cases, the numerical results obtained from this 

code are encouraging since they agree very well with previously published numerical 

and experimental results.

The cases for which converged solutions could not be obtained were also very illumi

nating because they demonstrated that mesh generation problems are often extremely 

important in free surface flows. We have identified two kinds of element distortion 

which it is desirable to avoid in a F.E. grid: (i) high aspect ratio elements, (ii) loss 

of element triangularity. Unfortunately as the downstream free surface is often highly 

curved in general roll coating situations, these distortions may be unavoidable. In such 

cases one should always question the solution’s validity.
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These mesh generation problems are also prevalent in the next chapter, in which the 

code is used (i) to obtain F.E. predictions of T1/T2 in fully-flooded forward roll coating 

over a wider velocity ratio range than previously published and (ii) to investigate the 

effects of starvation in forward roll coating.
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Figure 4.1: Commonly Used Elements Which Satisfy the LBB Condition
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o VELOCITY ONLY NODES

Figure 4.2: Local Node Numbering Scheme in the u -  v — p Formulation
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(a)

~  (b)

Figure 4.3: Velocity Field for Flow in a Lid-Driven (Square) Cavity with Re =  0.0: (a) 

Numerical (F.E.), (b) Semi-Analytical (40 terms in series)
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(a)

(b)

Figure 4.4: Velocity Field for Flow in an Open, Driven (Square) Cavity with Re =  0.0: 

(a) Numerical (F.E.), (b) Semi-Analytical (40 terms in series)
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(a)
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Figure 4.5: Velocity Vectors from the Zero Flux Model of Meniscus Roll Coating for 

Flows with (a) 5  = 1, H* =  0.5, (b) 5 = 2, H* =  0.5

Figure 4.6: Spinal Representation of the Free Surface in Slot Coating
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REGION 1 REGION 2 REGION 3

Figure 4.7: Slot Coating F.E. Grid Used in Present Work 

Direction of Integration

■  VELO C ITY  A N D  PRESSU RE NODE 
o  V E L O C IT Y  O N L Y  NODES

Figure 4.8: Free Surface Representation in terms of Triangular Elements
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(a)

Figure 4.9: Free Surface Profiles and Velocity Vectors for a Slot Coater with 

Re =  0.0, Ca =  0.4, q =  0.25: (a) this work, (b) Carter [1985]

(a)

Figure 4.10: Free Surface Profiles For a Slot Coater -  Dependence on Capillary Number 

for Re =  0.0, q =  0.25: (a) this work, (b) Saito and Scriven [1981]
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CASE (a) - Ca «0.125, q «0.13, Ra «50.0

THIS WORK

CASE (b) -  Ca «0.125, q «0.25, Ra «50.0

THIS WORK

j b s

Figure 4.11: Slot Coating Results with Re =  50, Ca =  0.125 and (a) q =  0.13, (b) 

q -  0.25
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(a)

(b)

Figure 4.12: Free Surface Profiles for a Slot Coater with Re =  50, Ca =  0.125 -  

Dependence on Flux: (a) this work, (b) Saito and Scriven [1981]

SYMMETRY PLANE - (a.s) =0; v = 0

NIP

LUBRICATION

CONDITIONS

ROLLER SURFACE - NO SLIP u = i

SYMMETRY LINE 
P CONDITIONS - u = v = 0 i U *  0

FREE SURFACE -  n.g = a-n= 0

OUTFLOW - n.a = 0

Figure 4.13: Boundary Conditions For Symmetric, Fully-Flooded, Forward Roll Coat-

mg
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I__________ ______________________________________ I_______________________I
R E G I O N  1 R E G I O N  2

Figure 4.14: A Typical F.E. Grid Used in Numerical Solutions of Symmetric, Forward 

Roll Coating

Figure 4.15: The Free Surface Representation Near the Symmetry Line P
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Figure 4.16: Elements Touching the Lower Half of the Nip in Symmetric, Forward Roll 

Coating

dBZ dR% dRZ dF£ dR£ dR*
due dv± dpe d h l dXm d \

ÔR* dR i dR_i . dR l dRc — y dR l
due dv± dpe dh _̂ dXm d x

dE% dRec o dR% dR'n 8 1 %

du6 dv± dh± dXm d x

d & k m L o dm< d * k 0d u f . dv1 d h t dXm

IO 0 § ß x
dpe 0 0 d R x

dX

IO 0 0 ^ R a v m m t tr y
d h e

dRtymmc try
dXm

0

Figure 4.17: The Structure of an Element-Level Jacobian in Symmetric, Forward Roll 

Coating
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Figure 4.18: A Condensed Flow Chart of the Algorithm to Solve Viscous Free Surface 

Flow by the F.E. Method
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Figure 4.19: F.E. Grids used in the Numerical Solution of Symmetric, Fully-Flooded, 

Forward Roll Coating: (a) 102 elements, 245 nodes, (b) 132 elements, 315 nodes, (c) 

208 elements, 477 nodes

(a)

(1) Cm -0.1

(b)

Figure 4.20: The Effect of Capillary Number on the Flow Field in Symmetric,

Fully-Flooded Forward Roll Coating with Re =  0.0, R/H0 -  100: (a) this work,

(b) Coyle et a] [1982]
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(a)

(b)

Figure 4.21: The Effect of Capillary Number on Free Surface Profiles in Symmetric,

Fully-Flooded, Forward Roll Coating for Re =  0.0, R/Ho =  100: (a) this work, (b)

Coyle et al [1982]
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Figure 4.22: F.E. Pressures Generated in Numerical Solutions of Symmetric,

Fully-Flooded, Forward Roll Coating for Re =  0.0, R/Hq =  100: (a) this work, (b)

Coyle et al [1982]
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♦ DATA OF PITTS AND GREILLER 11961]

□ F. E. PREDICTIONS -  Re =  o.o, R /B 0 = 10 0

- a s

Figure 4.23: A Comparison between Theoretical Predictions (F.E.) and Experimental 

Measurements of <tq
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o ASYMPTOTIC SOLUTION (COYLE ET AL C1986])
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1.1
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CAPILLARY NUMBER, Co

(b)
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Figure 4.24: F.E. Predictions of the Dimensionless Flux in Symmetric, Fully-Flooded, 

Forward Roll Coating: (a) this work, (b) Coyle et al [1986]
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Figure 4.25: Element Distortions in Region 2 with Re =  0.0 and (a)

Ca =  0.03, R/Ho =  100, (b) Ca =  0.01, R/H0 = 400, (c) Ca =  0.01, R/H0 =  1000
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ii_______________________I
REGION 1 REGION 2

Figure 4.26: A Typical F.E. Grid Used in the Numerical Solution of Asymmetric For

ward Roll Coating

Figure 4.27: Boundary Conditions for Asymmetric, Fully-Flooded, Forward Roll Coat

ing
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FILM THICKNESS (a)

RATIO 

T1/T2

(b)

10 f-
i

Sr-
I

6 •—

Speed ratio. V,J Vx

Figure 4.28: F.E. Film Thickness Ratio Predictions for Asymmetric, Fully-Flooded, 

Forward Roll Coating with Re =  0.0, Ca -  oo, R/H0 =  200: (a) this work, (b) Coyle 

et al [1986]
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( a )

Figure 4.29: F.E. Grid Distortion In Asymmetric, Forward Roll Coat

ing: (a) Re =  0.0, Ca =  oo, R/H0 =  200, 5 = 1.0, (b)

Re =  0.0, Ca = oo, R/H0 =  200, S = 6.75
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(a) Horizontal Components of Liquid Velocity on the Vertical Centreline ( x =  0.0 )

y  = Semi-Analytical Scheme A Scheme D
N  =  20

oII

2.000 1.082 0.947 1.000 1.000
1.875 0.651 0.651 0.653 0.666
1.750 0.355 0.355 0.363 0.353
1.625 0.127 0.127 0.136 0.146
1.500 -0.032 -0.032 -0.021 -0.028
1.375 -0.132 -0.132 -0.121 -0.113
1.250 -0.186 -0.186 -0.176 -0.174
1.125 -0.206 -0.206 -0.197 -0.190
1.000 -0.205 -0.205 -0.198 -0.192
0.875 -0.192 -0.192 -0.187 -0.181
0.750 -0.171 -0.171 -0.167 -0.164
0.625 -0.147 -0.147 -0.145 -0.143
0.500 -0.123 -0.123 -0.120 -0.119
0.375 -0.097 -0.097 -0.095 -0.095
0.250 -0.070 -0.070 -0.069 -0.068
0.125 -0.039 -0.039 -0.039 -0.036
0.000 0.0000 0.0000 0.0000 0.0000

(b) Vertical Components of Liquid Velocity on the Horizontal Centreline ( y =  1.0 )

x = Semi-Analytical Scheme A Scheme D
N =  20

o■<**II

-1.000 0.000 0.000 0.000 0.000
-0.875 0.095 0.095 0.094 0.083
-0.750 0.156 0.156 0.152 0.152
-0.625 0.183 0.183 0.178 0.170
-0.500 0.179 0.179 0.174 0.172
-0.375 0.152 0.152 0.147 0.142
-0.250 0.109 0.109 0.106 0.104
-0.125 0.057 0.057 0.054 0.053
0.000 0.000 0.000 0.000 0.000
0.125 -0.057 -0.057 -0.054 -0.053
0.250 -0.109 -0.109 -0.106 -0.104
0.375 -0.152 -0.152 -0.147 -0.142
0.500 -0.179 -0.179 -0.174 -0.172
0.625 -0.183 -0.183 -0.178 -0.170
0.750 -0.156 -0.156 -0.152 -0.152
0.875 -0.095 -0.095 -0.094 -0.083
1.000 0.0000 0.0000 0.0000 0.0000

Table 4.1: Liquid Velocity Components in Lid-Driven Cavity Flow (A*=1.0) -  Com

parison between Semi-Analytical and Numerical (u — v — p) Results
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(a) Horizontal Components of Liquid Velocity on the Vertical Centreline ( x = 0.0 )

y = Semi-Analytical (N = 40) Numerical
2.0 0.94721 1.00000
1.9 0.71745 0.71918
1.8 0.46597 0.47092
1.7 0.25549 0.26178
1.6 0.08984 0.09829
1.5 -0.03245 -0.02387
1.4 -0.11642 -0.10765
1.3 -0.16890 -0.16067
1.2 -0.19703 -0.18971
1.1 -0.20730 -0.20059
1.0 -0.20519 -0.19990
0.9 -0.19496 -0.19089
0.8 -0.17979 -0.17626
0.7 -0.16186 -0.15913
0.6 -0.14255 -0.14027
0.5 -0.12259 -0.12095
0.4 -0.10213 -0.10078
0.3 -0.08081 -0.07987
0.2 -0.05778 -0.05788
0.1 -0.03157 -0.03116
0.0 0.00000 0.00000

(b) Vertical Components of Liquid Velocity on the Horizontal Centreline ( y = 1.0 )

X  = Semi-Analytical (N = 40) Numerical
- 1 . 0 0 . 0 0 0 0 0 0 .0 0 0 0 0

-0.9 0.07813 0.07740
-0.8 0.13566 0.13345
-0.7 0.17068 0.16779
-0.6 0.18411 0.18066
-0.5 0.17885 0.17521
-0.4 0.15869 0.15563
-0.3 0.12751 0.12464
-0.2 0.08880 0.08707
- 0 . 1 0.04549 0.04404

0 . 0 0 . 0 0 0 0 0 0 .0 0 0 0 0

0 . 1 -0.04549 -0.04404
0.2 -0.08880 -0.08707
0.3 -0.12751 -0.12464
0.4 -0.15869 -0.15563
0.5 -0.17885 -0.17521
0.6 -0.18411 -0.18066
0.7 -0.17068 -0.16779
0.8 -0.13566 -0.13345
0.9 -0.07813 -0.07740
1 . 0 0 . 0 0 0 0 0 0 .0 0 0 0 0

Table 4.2: Liquid Velocity Components in Lid-Driven Cavity Flow (.A*=1.0) obtained 

using Grid (b) of Figure 2.3
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(a) Horizontal Components of Liquid Velocity on the Vertical Centreline ( x =  0.5 )

y  = Semi-Analytical ( N  =  20) Numerical
Ô . O o o o 0.30575 0.29553

-  o  ■ e i n ' 0.29550 0.28636
- o n s e t 0.26638 0.25853
- o - w t r 0.22260 0.21616
- o . i s d o 0.16931 0.16536
- O  .MIS’ 0.11120 0.10834
- V . J K O 0.05168 0.05125

-0.00704 -0.00681
-  O SOÙO -0.06341 -0.06100

-0.11581 -0.11125
•  0frSCi -0.16180 -0.15712
- 0 - -0.19741 -0.19124
- e . V f c o -0.21685 -0.21093
» o . g / 2 r -0.21276 -0.20706
• ' o - î w -0.17766 -0.17308
- o  < i y & -0.10659 -0.10496
~¡0060 0.00000 0.00000

(b) Vertical Components of Liquid Velocity on the Horizontal Centreline ( y =  —0.5 )

x = Semi-Analytical (N  =  20) Numerical
0.0000 -0.00001 0.00000
0.0625 0.06090 0.05946
0.1250 0.10761 0.10518
0.1875 0.14431 0.14110
0.2500 0.17361 0.16949
0.3125 0.19668 0.19184
0.3750 0.21340 0.20769
0.4375 0.22225 0.21589
0.5000 0.22007 0.21253
0.5625 0.20188 0.19294
0.6250 0.16067 0.15150
0.6875 0.08757 0.07845
0.7500 -0.02732 -0.03634
0.8125 -0.19295 -0.19927
0.8750 -0.41442 -0.41914
0.9375 -0.69350 -0.68828
1.0000 -0.90219 -1.00000

Table 4.3: Liquid Velocity Components for the Flow in an Open, Driven Cavity 

(A*=1.0) -  Comparison between Semi-Analytical and Numerical (u — v — p) Results
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Case (a): S =  1, H m = 0.5

(i) Horizontal Components of Liquid Velocity on Vertical Centreline ( i  = 0.0)

y = Analytical 
(.N = 40)

Numerical

0.5000 0.99204 1.00000
0.4375 0.34377 0.35043
0.3750 -0.12500 -0.11354
0.3125 -0.40625 -0.39182
0.2500 -0.50000 -0.48455
0.1875 -0.40625 -0.39182
0.1250 -0.12500 -0.11354
0.0625 0.34377 0.35043
0.0000 0.99204 1.00000

(ii) Vertical Components of Liquic Velocity on Horizontal Centreline ( y = 0.25)

X = Analytical 
(IV = 40)

Numerical

0.000 0.00000 0.00000
0.125 0.00000 0.00000
0.250 0.00000 0.00000
0.375 0.00000 0.00000
0.500 0.00000 0.00000
0.625 0.00000 0.00000
0.750 0.00000 0.00000
0.875 0.00000 0.00000
1.000 0.00000 0.00000

Case (b): 5 = 2, H m =  0.5

(i) Horizontal Components of Liquid Velocity on Vertical Centreline ( x = 0.0)

y = Analytical 
(TV = 4 0 )

Numerical

0.5000 1.98409 2.00000
0.4375 0.89074 0.90072
0.3750 0.06262 0.07979
0.3125 -0.48429 -0.46266
0.2500 -0.75000 -0.72683
0.1875 -0.73446 -0.71280
0.1250 -0.43762 -0.42040
0.0625 0.14058 0.15057
0.0000 0.99204 1.00000

(ii) Vertical Components of Liquic Velocity on Horizontal Centreline ( y — 0.25)

X  = Analytical 
(TV =  40)

Numerical

0.000 0.33541 0.34719
0.125 0.08578 0.08593
0.250 0.00153 0.00049
0.375 -0.00113 -0.00113
0.500 0.00000 0.00000
0.625 0.00113 0.00113
0.750 -0.00153 -0.00049
0.875 -0.08578 -0.08593
1.000 -0.33541 -0.34719

Table 4.4: Liquid Velocity Components from the Zero Flux Model of Meniscus Roll 

Coating -  Comparison between Analytical and Numerical (u — v — p) Results
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Chapter 5: Further Results in Forward Roll Coating
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Chapter 5

Further Results in Forward Roll 

Coating

5.1 Introduction

In Chapter 4 a F.E. free surface code was developed and applied to flow problems of 

gradually increasing complexity. At each stage, the numerical predictions were vali

dated against, and in most cases agreed very well with, previously published data. In 

this chapter we modify this F.E. code in order to obtain theoretical predictions for 

fully-flooded and starved forward roll coating in regions of operating parameter space 

for which no previous results have been reported.

For example, previously published F.E. predictions of the film thickness ratio Tx/Ti 

in the fully-flooded case (due to Coyle et al [1986]) were limited to the velocity ratio 

range most widely used in industry, namely 1 < 5  < 10. In the next section, F.E. 

predictions of T\jTi are obtained over the range 0.1 < 5  < 40 in order to evaluate the 

suitability of (i) Savage’s [1992] theoretical prediction and (ii) Benkreira et al’s [1981] 

correlation for 5  > 15. In subsequent sections, the code is also used to investigate 

the effects of starvation on the associated velocity and pressure fields, and film thick

ness ratio T1/T2 in forward roll coating syterns. This is achieved by monitoring how 

the F.E. predictions of these quantities change as the dimensionless flux A is reduced 

from its fully-flooded value. These numerical predictions are compared with Malone’s

170
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[1992] experimental flow visualisation, pressure and average film thickness ratio data 

for starved roll coating.

5.2 The Fully-Flooded Forward Roll Coater

In this section we return to the problem of fully-flooded forward roll coating with 

variable speed rollers. Once again, for convenience, attention is restricted to the case 

in which the roller radii axe equal so that asymmetry is due only to unequal roller 

speeds. The boundary conditions for Coyle et al’s [1986] model of this situation are 

shown in Figure 4.27.

In their F.E. study of this problem, Coyle et al [1986] published predictions for 

the dependence of the film thickness ratio T\fTi on the velocity ratio in the range 

1 < 5  < 10 (see Figure 4.28). They concluded that, in the absence of gravity, T1/T2 = 

S0 65 which is in qualitative agreement with the empirical formulation of Benkreira 

et al [1981]. However these predictions are limited to the hypothetical case in which 

Ca =  00 (i.e. negligible surface tension), while in practice Ca is non-zero. Moreover, 

the value of Ca changes when the roll coater is operated at different velocity ratios S 

-  in practice the lower roller speed is fixed whilst the upper one is changed (Malone 

[1992]) -  so it is also necessary to test whether the F.E. predictions of T i/T j have a 

Ca dependence. In the present section this is achieved by obtaining F.E. predictions 

of T1/T2 against 5 for a fixed value of Ca, and then repeating this process for a range 

of values of Ca.

Figure 5.1 shows F.E. predictions of T1/T2 for the case of fully-flooded forward roll 

coating. Results for three different values of Ca, namely Ca =  0.1, 0.5 and 2.0, are 

compared with Malone’s [1992] experimental data, Benkreira et al’s [1981] experimental 

correlation and Savage’s [1992] ’stagnation-point’ model (equation (1.9)). Note that, 

as in Figure 4.28, it is preferable to present results on a logarithmic rather than a 

normal scale because this (i) facilitates a convenient comparison with Benkreira et al’s 

correlation, (ii) permits results to be shown over a wide range of velocity ratio. The F.E. 

results presented here employed the computational grid shown in Figure 4.26 and were
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obtained by zeroth order continuation from results given in §§4.6.2. Once again, the 

F.E. equations are solved by the Frontal method, each iteration taking approximately 

20 c.p.u. seconds. In most cases converged solutions were obtained after 5 iterations.

The results divide naturally into two regions: 0.1 < 5  < 15 and 5 > 15. In the 

former, the F.E. predictions of T1/T2 are independent of Ca and agree reasonably well 

with Savage’s prediction that T1 /T 2 =  5 (5  +  3 ) / ( l  +  35). Moreover, since they are 

almost parallel to the solid line representing Benkreira et al’s correlation, they also 

agree extremely well with Coyle et al’s proposal that T1/T2 =  50 65. Of course a proper 

assessment of the merits of any model can only be made by comparing its predictions 

with experimental data. However, in contrast to Benkreira et al who obtained data for 

the fully-flooded situation up to 5  = 14.9, Malone [1992] found that he was unable to 

obtain accurate data using Shell Tellus R5 oil outside the range 0.2 < 5  < 4.0. He has 

attributed this to the differences in the physical properties between the liquid he used 

(rj =  0.008 jVm2s, T  =  0.03 JVm-1 ) and those used by Benkreira et al [1981] (0.06 

< r) < 1.68, 0.032 < T  < 0.066). Nevertheless his data agrees reasonably well with (i) 

Benkreira et al, (ii) the F.E. predictions, and (iii) Savage [1992] over this limited range.

When 5 is taken above 15, the F.E. predictions begin to exhibit a significant Ca 

dependence, most notably for Ca =  2.0. In the range 15 < 5 < 20, this Ca dependence 

is only weak and the F.E. predictions are still in reasonable agreement with Savage’s 

result, but they begin to show a palpable departure from the solid line correlation. 

When 5  > 20 this Ca dependence becomes stronger, with the result that the F.E. 

predictions are in poor agreement with the correlation, although they remain in broad 

agreement with Savage’s prediction. Unfortunately there is an upper limit on the 

velocity ratio range over which F.E. predictions are achievable, for a given value of 

Ca, using the grid shown in Figure 4.26. For Ca =  2.0, F.E. results were obtainable 

for 5  < 26, whereas for Ca = 0.5 and 0.1 this upper limit increased to 30 and 40 

respectively. The reasons for these convergence difficulties become apparent when we 

inspect elements in region 2 for flows with high velocity ratios.

Figure 5.2, for example, shows how elements in region 2 of the grid shown in Figure 

4.26 are distorted for flows with Re =  0.0, R/Hq =  200 and (a) Ca =  0.1, 5  = 40.0,
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(b) Ca =  0.5, S = 30.0, and (c) Ca — 2.0, S =  26.0. Even though, in Figure 5.2, it is 

impossible to resolve the shape of those elements in the lower, thin film, it is evident 

that increasing S has the effect of increasing the curvature of the free surface portion 

near to the lower roller. Close inspection of these grids reveals that elements near 

this high curvature region have lost their triangularity. The author believes that the 

gradual loss of element triangularity, in this high curvature region, as the velocity ratio 

is increased explains why there is an upper limit on the velocity ratio range over which 

F.E. predictions are achievable: it leads to a critical situation at which the Jacobian 

of the transformation (B.40) vanishes with the result that the isoparametric mapping 

is no longer invertible. This idea is illustrated in Figure 5.3, which describes Strang 

and Fix’s [1973] analysis of the relatively simple case in which two element sides are 

fixed and the mid-side node (P) of the third side can move. They showed that the 

isoparametric mapping (B.40) becomes singular when P moves into the shaded region 

in which either 0 < x < 1/4 or 0 < y < 1/4.

5.2.1 Difficulties in Meshing Flows with Highly Curved Free Sur

faces

In previous sections we have emphasized that the accuracy of any F.E. solution whose 

computational grid contains distorted elements should always be questioned unless 

there is corroborating evidence to validate its predictions. For example, in Figure 5.1 

the numerical predictions of T\/T2 up to 5  = 14.9 are supported by data from Benkreira 

et al’s [1981] extensive experimental study. However above 5  = 14.9, there is no 

experimental evidence to confirm the F.E. predictions, although they are in qualitative 

agreement with Savage’s [1992] theoretical prediction. In the present section we discuss 

the accuracy of the F.E. solutions for 5  > 14.9.

A first option would be to follow Coyle et al [1986], who seem to have assumed 

that if a solution is grid-independent for one set of parameters when a particular mesh 

generation algorithm is used, then solutions for a different set of parameters obtained 

using the same algorithm will also be grid-independent. The issues raised by this as

sertion will be discussed shortly. A second option might be to obtain a theoretical
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error estimate for solutions with high 5. Unfortunately most error analyses (e.g. the 

‘Patch Test’ ) can only furnish global error estimates for solutions obtained on reason

ably uniform F.E. grids. Consequently they are inapplicable for solutions obtained on 

the highly non-uniform grids used here. The other alternative, which has been used in 

earlier sections, is to obtain solutions on grids whose mesh generation algorithms differ 

from the one shown in Figure 4.26.

Of course, in practice it is simply not feasible to reproduce each of the F.E. solutions 

shown in Figure 5.1 on a number of different grids because the computational costs 

are prohibitively high. Instead we compromise by examining the effect of changing 

the number of elements and algorithmic parameters such as X I N C  and the spine 

orientations (see §§4.5.3) on one particular high velocity ratio solution. We actually 

chose to obtain F.E. solutions for the parameter set Re =  0.0, Ca =  0.1, R/Hq =  200 

and S = 30.0 as this is representative of the high velocity ratio solutions shown in 

Figure 5.1. This should therefore indicate whether solutions in this parameter range 

are sensitive to the exact form of the grid chosen.

Testing the suitability of region 1 is easy: we found that adding more elements into 

region 1 of the grid shown in Figure 4.26 had no effect on the solution, which suggests 

that it is already sufficiently refined. However, evaluating the suitability of region 2 

is fax more difficult. Altering the grid in region 2 is very time-consuming because 

converged solutions for the chosen parameter set can only be obtained by zeroth order 

continuation from the initial solution (whose T1 /T 2 value is shown in Figure 5.1) when 

the grid is changed by small increments. Moreover the author’s experience shows that 

the question of whether a grid is suitable for flows with high 5 is influenced far more 

by the relative orientation of the spines and the parameters X I N C  than it is by the 

number of elements packed into region 2. Indeed, grids with inappropriate choices for 

the former are useless for flows with high 5, regardless of how many elements are packed 

into region 2.

The last point illustrates the crux of the convergence difficulties experienced for the 

types of flow problems encountered in this thesis: the tesselation of region 2 by these 

primitive mesh generation algorithms is more of a ‘black art’ than a science. Ideally
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one might circumvent these problems by packing many more elements into a uniform 

tessellation of region 2, but regrettably we are prevented from doing so here due to 

practical constraints on available storage (even with the Frontal method). Therefore 

the only useful test of the suitability of the tessellation in region 2 is to add more spines 

into the basic tessellation shown in Figure 4.26. When this was done, the predicted 

value of Ti /T 2 was found to be surprisingly insensitive to the number of extra spines 

added, which suggests that the tessellation of Figure 4.26 may be sufficiently refined 

for the chosen flow parameters.

We conclude this section by noting that although the heuristic test described above 

can be useful in some circumstances, its lack of mathematical rigour means that the high 

velocity ratio predictions shown in Figure 5.1 cannot be considered to be other than 

speculative in the absence of corroborating experimental data. Hence the simplicity of 

Savage’s [1992] analytical result may render it to be of greater practical value than the 

F.E. results shown here; furthermore, at present it is impossible to determine whether 

the Ca dependence at high 5 is caused by mesh generation problems or actually occurs 

in reality. Finally, we have concentrated in this section on the inadequacies of the 

mesh generation schemes used in this thesis. It is also important to emphasize its not 

inconsiderable achievements. If the algorithmic mesh generation parameters for region 

2 are chosen wisely, the F.E. method is able to predict the velocity and pressure fields 

and film thicknesses Tj, T2 for flows with highly curved meniscii. At the present state 

of knowledge, these techniques provide the only means by which free surfaces, including 

the effects of surface tension, can be adequately incorporated into models for flow in 

this parameter range.

5.3 The Flow in a Flat Plate/ Roller Geometry

5.3.1 Introduction

In Chapters 2 and 3 we saw that the flow in a forward roll coater is transformed 

when the supply of liquid at inlet is substantially reduced below the level required to 

flood the inlet. In the remainder of this chapter, we show how the numerical methods
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developed in Chapter 4 can be used to obtain theoretical predictions for the flow field 

in a starved roll coater over the entire range of starvation from fully-flooded to ultra- 

starved flow. These numerical predictions, which are compared with the analytical 

predictions obtained earlier and Malone’s [1992] experimental data, reveal interesting 

transitions in both the velocity and pressure fields as the flux is decreased from its 

fully-flooded value.

An important goal of the analysis presented here is to establish the validity or 

otherwise of the prediction of the Zero flux model that the pressure profile is linear in 

the central core of a meniscus roll coater (see §§2.5.2). Of course, this validation requires 

experimental data with which to compare the theoretical predictions. However, from 

an experimental viewpoint it is far more convenient to measure pressures in a simple 

variant of the two roll system, consisting of a stationary upper plate and a moving lower 

roller (see Figure 5.4), because this can be achieved by inserting ‘pressure tappings’ 

into the plate -  see also Chapter 6 of Malone’s thesis. Note that the pressures in this 

simplified ‘flat plate/ roller geometry’ are still relevant to the two roll system since this 

configuration can be regarded as a special case -  namely the upper roller stationary and 

of infinite radius. Furthermore it forms a link between the forward and reverse modes 

of roll coating, so the pressure distribution in this geometry should be characteristic of 

both modes as the upper roller speed tends to zero (Adachi, Tamura and Nakamura 

[1988]). For the above reasons, it is convenient to begin our investigation into the effects 

of starvation by considering the flow in a flat plate/ roller geometry.

Despite its relative simplicity, the flow in this geometry has received much less at

tention than the two roll system and moreover all authors seem to have restricted their 

analyses to the fully-flooded situation. An important early contribution was made by 

Hopkins [1957] whose lubrication model of the flow in the nip region was terminated 

at separation boundary conditions. Meanwhile Sullivan and Middleman’s [1979] study 

had a different emphasis: they considered the case in which the plate is aligned verti

cally and investigated how gravity affects the coating thickness produced on the roller. 

Their analysis is similar to that of Hopkins, but they terminated the lubrication regime 

by Reynolds conditions (1.5) instead. The only numerical solutions of this problem
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which have appeared in the literature to date are those given by Coyle et al [1986], 

Their numerical predictions agree reasonably well with those of the aforementioned 

lubrication theories and the experimental data of Sullivan and Middleman [1979] and 

Adachi et al [1988].

In the following two sections we describe models for flow in a flat plate/ roller 

geometry which can be solved numerically, using the techniques developed in Chapter 

4, to yield theoretical predictions of the velocity and pressure fields over the entire range 

of starvation. The first of these models, which pertains to the fully-flooded situation, is 

actually a modified version of that given by Coyle et al [1986] for the two roll system. 

In each of these models, the flow problem shown in Figure 5.4 is non-dimensionalised 

by scaling liquid velocities by V , the velocity of the roller, while the length and pressure 

scalings are given by equation (4.69). Note that there is, however, one modification 

to the non-dimensionalisation used in §§4.5.2 because, for the present application, it is 

more convenient to define Ho to be the total nip width between the plate and roller 

rather than the semi-nip width.

5.3.2 A Numerical Model of Fully-Flooded Flow in a Flat Plate/ 

Roller Geometry

The (dimensionless) model for fully-flooded flow in a flat plate/ roller geometry devel

oped here is illustrated in Figure 5.5. There are many similarities between this model 

and the one described in §§4.5.2 for the two roll situation because once again we invoke 

lubrication theory in order to restrict the analysis to the flow region between the nip 

and the downstream free surface. In fact, the boundary conditions at the roller surface, 

free surface and outflow boundaries are identical to those shown in Figure 4.13 while 

those at the plate, nip and static contact line (where the downstream free surface meets 

the plate) differ from conditions (i), (v) and (vi) of §§4.5.2 respectively. In the present 

application they are replaced by 

(i) On the Plate

The no-slip condition yields a stagnation point condition: u =  0 which is imposed in 

the usual way.
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(ii) At the Nip

As in §§4.5.2, it is possible to derive boundary conditions on the liquid velocity and 

pressure at the nip by a lubrication analysis of the flow in the nip region. This analysis 

is slightly different to the one presented in §§4.5.2 due to the different definition of Eq\ 

in the flat plate/ roller geometry it is more natural to define the dimensionless flux A

by

A = - 2 _
VH0

(5.1)

rather than by equation (4.74). The transformed nip region co-ordinates (0, 77) and 

the modified pressure, p*, have the same definitions as those used in equations (4.73), 

(4.74) but note that 77 =  1 on the plate and 77 =  0 on the roller surface. In terms 

of these dimensionless quantities it may be shown that the pressure gradient (4.78) is 

replaced by

= ( l  +  * 2 / 2 ) 3  ( l  +  x2/ 2 - 2 A )  (5.2)

which may be integrated subject to the usual fully-flooded assumption that pressure 

decays to atmospheric far upstream of the nip (i.e. p*(—00) =  0), to yield an expression 

for the pressure at any point of the nip region in terms of A. It is easily shown that the 

boundary conditions on velocity and pressure at the nip (0 =  0) reduce to

u =  3(1 -  2A)(t72 -  77) +  I -77 (5.3)

v =  0 (5.4)
3v/2 tt R ( m 3A\

?  =  — f l o l 1 “ )  (5'5)

These conditions are imposed in the numerical solution by the method described in 

§§4.5.3.

(iii) At the Static Contact Line P

The downstream free surface intersects the stationary plate at a static contact line P 

where the contact angle 0C shown in Figure 5.5 is unknoxm in general. Consequently 

there are two parameters associated with the contact line, namely its position (which is 

parametrised by X m, see §§4.5.3) and the contact angle 0C, which must be determined
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in any full solution of the problem. However in any numerical simulation a compromise 

must be reached because there is only one equation -  the kinematic residual (4.50) 

associated with P -  to determine the two unknowns 0C and X m. There are two possible 

courses of action that can be taken: (i) impose the position of the contact line, i.e. 

impose X m, as a parameter and allow the contact angle 6C to be determined as part of 

the solution, or (ii) impose the contact angle 0C to a value measured experimentally.

In the solutions presented here we follow Coyle et al [1986] and choose alternative 

(ii). As explained in §§4.5.2, since there are stagnation point conditions on liquid 

velocity, u — v =  0, at P the extra equation needed to determine 6C is not actually a 

kinematic residual, but instead takes the form i.t =  cos 0C, where t is the unit horizontal 

vector and t is the unit tangent vector to the free surface at the contact line, calculated 

in terms of those F.E. variables which specify the position of the downstream free 

surface. This completes the equation set for the fully-flooded case.

In the following section we show how this fully-flooded model can be refined to 

accomodate the effects of starvation.

5.3.3 A  Numerical Model of Starved Flow in a Flat Plate/ Roller 

Geometry

The success of the analytical film thickness model for forward meniscus roll coating 

supports the hypothesis that lubrication theory provides an accurate description for 

the flow in the nip region of a forward roll coater in both the fully-flooded and ultra- 

starved cases. This observation motivates the key assumption of the starved model 

adopted here: we postulate that the flow in the nip region is well approximated by 

lubrication theory over the entire range of starvation , i.e. including the moderately- 

starved case.

In the above model for the fully-flooded situation, the equation needed to determine 

A (equation (5.5)) is provided by a lubrication analysis of the flow in the nip region sub

ject to the fundamental fully-flooded assumption that pressure decays to atmospheric 

far upstream of the nip, i.e. P (—oo) =  0. However, Malone’s [1992] experimental 

observations show that this assumption is no longer valid when the inlet is starved
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because the upstream free surface moves much closer to the nip -  see Figure 5.6 for a 

typical ultra-starved situation. Therefore in the starved case, it is no longer possible 

to provide a pressure condition at the nip as is required if A is to be predicted.

Consequently, any analysis of starved flow in a flat plate/ roller geometry which 

seeks to determine the flux A must necessarily include the effects of the upstream free 

surface, its associated static contact line and the inlet film. Such an analysis is beyond 

the scope of the present work. Fortunately, there is a simpler alternative which once 

more allows the analysis to be confined to the flow between the nip and the downstream 

free surface: simply impose A as a parameter, thereby removing the need for a nip 

pressure condition.

It can easily be shown that, under the non-dimensionalisation used in this section, 

the small flux model (equations (3.4), (3.5)) furnishes the same velocity profile across 

the nip as that given by the lubrication equations (5.3), (5.4). Hence, under the key 

assumption described above, the model of starvation adopted here is to simply impose 

A in the latter conditions to a value which is less than that predicted by the fully- 

flooded analysis of §§5.3.2. This provides a simple mechanism for altering the degree 

of starvation in the flow.

Apart from the condition at the nip, all other boundary conditions for the starved 

case, namely those at the roller surface, outflow boundary, flat plate and static contact 

line, are identical to those for the fully-flooded situation. In the following section 

we present theoretical predictions obtained by solving the above models numerically 

using the Galerkin F.E. method and compare the major features of the predicted flow 

transition with those observed experimentally.

5.3.4 Results and Discussion

The first F.E. predictions for the flow in this geometry were obtained for the fully- 

flooded case with Re = 0.0, Ca = 0.1, R/Hq =  100 and a contact angle 6C =  90° 

in order to make the geometry identical to that of the ‘half-domain’ solution for the 

symmetric, fully-flooded, forward roll coater. The grid used in this first solution consists 

of 245 nodes, 102 elements and 21 spines; region 2 of this grid is shown in Figure 5.7
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(a), while region 1 is identical to that of grid (a) shown in Figure 4.19. The start-up 

approximation for this grid was estimated from the solution obtained in §§4.5.5 for the 

symmetric, fully-flooded, forward roll coater with the same set of parameters. However, 

in practice it was necessary to experiment with many different ‘guesses’ of the contact 

line location parameter X m before the first converged solution was actually obtained.

To test the sensitivity of the calculated flows to the discretisation used, this initial 

solution was compared against solutions obtained using 2 finer grids whose downstream 

regions are shown in Figure 5.7: grid (b) with 357 nodes, 150 elements and 27 spines, 

and grid (c) with 567 nodes, 248 elements and 33 spines. Note that the upstream regions 

of grids (b), (c) have tessellations which are identical to those shown in Figures 4.19 (b),

(c) respectively. Meanwhile a series of numerical results, in which the outflow boundary 

was placed at a number of different locations, were obtained on all 3 grids in order to 

ensure that the solutions were insensitive to changes in its position. It was observed that 

in all solutions obtained using grids (a), (b) and (c), each iteration took approximately 

10, 12 and 14 c.p.u. seconds respectively. Moreover those numerical results which 

were insensitive to changes in the position of the outflow boundary revealed that in 

changing from (i) grid (a) —► (b), (ii) grid (b) -»  (c) the most sensitive variables (X m 

and the pressures at the nip) changed by less than 3% and 0.01% respectively of their 

previous values. This suggested that grid (b) was suitable for flows with parameters 

in this range; consequently the next two sets of results are obtained by zeroth order 

continuation from a suitable initial solution obtained using grid (b).

Figure 5.8 examines the effect of the imposed contact angle 6C on the predicted 

downstream free surface profile for this flow. It shows that the position of the static 

contact line is very sensitive to the value of the contact angle; in particular, when 0C 

increases the downstream free surface recedes towards the nip. This prediction concurs 

with those shown in Figure 18 of Coyle et al [1986]. Another interesting prediction 

relates to the flow rate through the nip. Note that as the effects of gravity are neglected 

in the theoretical predictions (i.e. St= 0 in equation (4.1)), the film on the lower roller 

achieves an asymptotic thickness whose value is proportional to the flux through the 

nip. Therefore since this thickness is insensitive to 6C in the range 70° < 0 C< 140°, so
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too is A. Actually the predicted values of A in the solutions shown in Figure 5.8 satisfy 

0.64 < A < 0.66, which are in reasonable agreement with Coyle et al’s [1986] F.E. 

predictions (note that the A values given in their Figure 17 are double those defined 

by equation (5.1)) and the experimental data o f Sullivan and Middleman [1979], who 

measured 0.55 < A < 0.65, and Adachi et al [1980] who found the average value of A 

to equal 0.6.

In his experimental study of the flow in a flat plate/ roller geometry, Malone [1992] 

measured the position and shape of the downstream free surface under different degrees 

of starvation. His free surface profile in the fully-flooded case (for which he estimated 

Ca = 0.05 and RJHq =  110) displayed an apparent contact angle 0C =  33° -  quite 

different from those considered so far. Numerical predictions for fully-flooded flow with 

this set of parameters (and Re =  0.0), obtained using grids (b) and (c) of Figure 5.7, 

demonstrated that this low value of 0C results in element distortion near the contact line 

P; this feature is illustrated in Figure 5.9, where elements in region 2 of these two grids 

are shown. Previous experience suggests that these distortions may render grid (b) 

unsuitable for flows with 6C in this range, but the computed results suggest otherwise 

because they reveal that in changing from grid (b) —► (c), the most sensitive variable 

(X m in this case) changes by less than 0.3% of its previous value. Moreover, since 

Malone’s experimental profiles had 0C «  33° over the entire range from fully-flooded 

to ultra-starved flow (see later), all subsequent F.E. solutions presented in this section 

have been calculated using grid (b).

Figure 5.10 examines the effect of changing the capillary number, Ca, on the pre

dicted downstream free surface profile for a flow with Re =  0.0, R/Hq = 1 1 0  and a 

fixed 0C — 33°. As in the symmetric, fully-flooded, forward roll coater the free surface 

position is very sensitive to the value of Ca: increasing the value of Ca results in the 

free surface receding towards the nip (compare with Figure 4.21). Once again, the 

asymptotic film thicknesses, and consequently the dimensionless fluxes A, are reason

ably insensitive to changes in Ca; more precisely, the solutions shown in Figure 5.10 

have 0.6 < A < 0.66. In the remainder of this section, Malone’s [1992] experimental 

measurements of the free surface profiles, pressures and flow field in a flat plate/ roller
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geometry, over the entire range of starvation, are compared with F.E. predictions for 

similar flow situations. However, any comparison between theory (F.E.) and experi

ment is only meaningful if the flow parameters Ca, R/Hq, 6c and A, which are required 

as input into any F.E. solution, can be estimated accurately. Hence, before presenting 

any theoretical results, it is worthwhile highlighting some of the practical difficulties 

Malone faced in estimating these parameters, because this promotes a more realistic 

appraisal of the agreement between theory and experiment which can be expected.

We consider the downstream free surface profile measurements, which were obtained 

on an experimental rig with the roller radius R=25mm, first. Estimation of the capillary 

number, Ca — tjV/T, is relatively straightforward because the physical properties are 

known and the roller speed V can be measured accurately. On the other hand, the 

inaccuracy in the measurement of 6C is expected to be greater than that in Ca, but is 

probably no greater than those caused by the empirical treatment of the contact line. 

However, inaccuracies in the measurement of the nip-width Ho, which impact upon 

the two remaining parameters R/Hq and A, are of far greater practical significance. 

Malone measured Ho using a ‘feeler guage’ with 50 micrometre increments and found 

that while he could push the guage through the nip when it was set to 200 micrometres, 

he was unable to do so when the guage setting was increased to 250 micrometres. He 

subsequently estimated Ho to be the average of these two values, i.e. 225 micrometres. 

This method, which was the best available to him, produces an uncertainty in Ho of 

11% which, even after ignoring the error in estimating the flux Q , leads to a potential 

error in both A and R/Hq of the same order of magnitude.

Malone estimated that his free surface profile measurements for the fully-flooded 

case related to a flow with parameters Ca =  0.05, R / H q =  110, 0C =  33° and A =  0.5. 

Note that this value of the dimensionless flux is significantly lower than the value, 

A = 0.66, given by the corresponding numerical solution of the fully-flooded model 

(with Re =  0.0 also) and the previously cited data of Sullivan and Middleman [1979] 

and Adachi et al [1988]. This discrepancy is surprising since it cannot be explained by 

even the most optimistic scenario of a 10% under measurement of A -  see discussion 

above. This may be the result of inertial effects becoming significant (for the low
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viscosity Shell Tellus R.5 oil) at the higher roller speeds needed to entrain larger fluxes 

A, since both Tharmalingham and Wilkinson [1978] (p 1158) and Wu, Weng and Chen 

[1985] (p 250) have reported that inertial effects can limit the amount of liquid entrained 

by the roller surface.

It was deemed more appropriate to compare the fully-flooded experimental data 

with theoretical predictions from both the fully-flooded model (where A is determined) 

and the starved model with A set equal to 0.5. These results are shown in Figure 5.11 

(a). The data agrees well with the fully-flooded prediction, whereas the agreement 

with the starved solution is at best only reasonable. The second, and final, free surface 

profile comparison is for an ultra-starved flow in which Malone estimated that Ca =  

0.0065, R/H0 =  110, A = 0.13 with 9C once more equal to 33°. Figure 5.11 (b) shows 

that the corresponding F.E. prediction from the starved model agrees reasonably well 

with his experimental data.

We now seek to determine the nature of the flow transition that occurs in a flat 

plate/ roller geometry when the flux passing through the nip is gradually reduced from 

a fully-flooded to an ultra-straved value. The strategy adopted here is to compare 

theoretical predictions for the flow, obtained from numerical solutions of the starved 

flow model for a range of values of the dimensionless flux A, with Malone’s experimental 

measurements for similar flow situations. Now, in his experiments Malone found it 

expedient to reduce the flux through the nip by simply reducing the roller speed V 

with the result that A, Ca and 0C all varied simultaneously. Fortunately, the F.E. 

predictions of the flow field over a range of Ca and 0C values exhibit essentially the same 

transitional characteristics when A is reduced. Therefore it is possible to illustrate the 

flow transition predicted by the F.E. method by the more convenient device of obtaining 

solutions in which only A is changed, leaving Ca and 6C fixed. Indeed this is the strategy 

adopted here.

Figure 5.12 demonstrates the theoretical transition between fully-flooded and 

moderately-starved flow predicted by the F.E. method by presenting velocity vectors 

and dimensionless F.E. pressures generated on the surface of the plate obtained from 

numerical solutions for the parameter set Re — 0.0, Ca =  0.05, R/Hq =  110, 0C =  33°
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with A = 0.66 (fuUy-flooded), 0.55,0.5, 0.45,0.35 and 0.25. Note that in order to ensure 

that the velocity vectors are clearly visible, it was necessary to present each solution on 

different scales since unilaterally reducing the flux actually results in the downstream 

free surface receding towards the nip. This point is illustrated in Figure 5.12 (g) where 

the free surfaces are drawn on a common scale. These results predict that starving the 

flow results in the recirculation next to the downstream free surface extending closer 

to the nip. Note that for A =  0.25, the recirculation actually extends upstream of the 

nip because the lubrication velocity profile condition (5.3) imposes reverse flow at the 

nip for A < 1/3.

The pressure transition is, perhaps, more interesting. Each point in a given pressure 

profile indicates the (dimensionless) F.E. pressure generated at the position on the plate 

immediately above that point -  no pressure scales are shown here since we are only 

interested in the shape of the pressure profile (see later). Note also that the solid line 

denotes the atmospheric pressure level (p =  0), which means that pressures below it are 

sub-ambient. In the fully-flooded case, the pressure profile shows the characteristic sub

ambient pressure loop demonstrated in Figure 1.10. As the flux is reduced, the pressure 

at the nip (i.e. the one shown in the figure immediately below the nip) falls and by 

A = 0.5 there no longer exists a turning point in the entirely sub-ambient pressure 

profile. When the flux is reduced still further from A = 0.5 to A = 0.25, it is possible 

to identify two qualitatively different, but adjoining, regions of the pressure profile. In 

the first region, which begins at the nip, the profile is reasonably linear whereas in the 

second, which extends up to the meniscus, the pressure is almost constant.

Figure 5.13 illustrates the theoretical transition between moderately-starved and 

ultra-starved flow in a flat plate/ roller geometry predicted by the F.E. method. As the 

flow parameters in Malone’s free surface profile measurements of ultra-starved flow, 

shown in Figure 5.11, were estimated to be Ca =  0.0065, R/Ho =  110, 6C =  33° 

and A = 0.13, it was deemed appropriate to exemplify this theoretical transition by 

presenting numerical solutions for the parameter set Re =  0.0, Ca — 0.0065, 6C = 

ZZ°,R/Hq =  110 with A = 0.2, 0.13 and 0.07. These results predict that gradually 

reducing the flux A from a moderately-starved to an ultra-starved value strengthens
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the recirculation until the flow becomes essentially eddy flow coupled with a thin film 

of liquid attached to the roller. Once again note that reducing the flux unilaterally 

results in the downstream free surface receding towards the nip -  a point illustrated in 

Figure 5.13 (d). Finally, the ultra-starved pressure profiles are qualitatively similar to 

those shown in Figure 5.12 for A < 0.45, although the constant pressure region extends 

further upstream towards the nip when A is reduced to an ultra-starved value.

These theoretical flow transition predictions are now compared with Malone’s ex

perimental findings for similar flow situations. We consider the flow visualisations, 

which he performed on the same experimental rig as was used in his free surface pro

file measurements, first. Figures 5.14 (a)-(d) show typical flow visualisations which he 

obtained for starved flow in a flat plate /roller geometry where the starvation increases 

from fully-flooded (Figure 5.14 (a)) to ultra-starved (5.14(d)). In each of these situa

tions, he injected blue dye into the inlet film (the roller is moving from left to right) 

with the result that dark blue dye regions indicate the path taken by the majority of the 

liquid entering the nip; whereas those which are relatively clear indicate the presence 

of a recirculation. Note that the downstream meniscus positions are not shown in these 

photographs -  unfortunately Malone was unable to capture a sufficiently wide enough 

field of view to include all features of the flow field. These visualisations are in qualita

tive agreement with the theoretical transition predicted in Figures 5.12 - 5.13 because 

they clearly demonstrate that the recirculation extends further upstream towards the 

nip as starvation is increased. Moreover, ultra-starved flow is seen to consist of a large 

recirculation which extends upstream of the nip coupled with a thin liquid film (i.e. 

the dark region of Figure 5.14 (d)) attached to the lower roller.

We now compare the above theoretical pressure transition predictions against ex

perimental pressure measurements. In order to measure the pressure profile in a flat 

plate/ roller geometry over the entire range of starvation, Malone inserted a series 

of ‘pressure tappings’ (at 2mm intervals) into the plate of a second, larger experi

mental rig with R =  0.13m and Ho (estimated by the ‘feeler guage’ technique outlined 

above)=325 micrometres. In Figure 5.15 (a), his pressure data for the fully-flooded and 

moderately-starved situations have been converted to units of Pascal (N/m2) while the
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horizontal distance from the nip in the downstream direction, X , is measured in mm. 

Once again, the experimental measurement of A =  0.503 for the fully-flooded case, 

which agrees extremely well with the value, A =  0.5, obtained earlier on the smaller 

rig, is significantly lower than the predicted value (A =  0.66) and the data of Sullivan 

and Middleman [1979] and Adachi et al [1988]. Since, on this larger rig, the maximum 

error in A which can be attributed to uncertainty in measuring Ho by the feeler guage 

method (where Ho =  325 ±  25 micrometres) is only 8%, this divergence cannot be 

explained by experimental error.

These pressure profiles show that reducing the flux from a fully-flooded value results 

in a fall in both the upstream pressure maximum and the pressure at the nip so that 

pressures downstream of the nip are entirely sub-ambient. They have the same general 

characteristics as those shown in Figures 5.12 - 5.13 except for the fact that there is 

still a pressure minimum when A = 0.388 which disagrees with both the F.E. method 

and the lubrication theory pressure gradient (5.2), which predict that there should be 

no turning points, i.e. points at which dp/dx =  0, for a flow with A < 0.5. Finally, note 

that when the flux is reduced the downstream contact line position is almost invariant 

whereas the upstream one moves closer to the nip. The former is contrary to what 

one might expect given the effect of reducing A shown in Figures 5.12 (g) and 5.13 (d), 

but the reason for this is that Malone reduced A by simply reducing the roller speed 

so the consequent decrease in Co (=rjV/T) counteracts the usual effect of reducing A 
(see Figure 5.10).

Malone’s data for the pressure transition between moderately- and ultra-starved 

flow in a flat plate/ roller geometry is shown in Figure 5.15 (b). These profiles are in 

qualitative agreement with the theoretical profiles for moderately-starved flow shown 

in Figure 5.13 because they are entirely sub-ambient and consist of an (almost) linear 

region near the nip adjoining a constant pressure region near the downstream free 

surface. Furthermore, the size of the latter increases as A is decreased to an ultra- 

starved value. Note that these findings are consistent with the analytical prediction 

of the zero flux model that the pressure gradient is constant in the central core of a 

meniscus roll coating bead.
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In contrast, however, the experimental results show that the downstream pressure 

minimum disappears when A »  0.3 rather than at the predicted value of A =  0.5. As in 

the moderately-starved cases, the downstream contact line position is almost invariant, 

but the extremely low speeds needed to attain an ultra-starved condition result in the 

upstream contact line actually moving away from the nip. This surprising feature of 

ultra-starved flow is discussed at greater length in Chapter 6 of Malone [1992].

So far the comparison between theory and experiment has been qualitative in na

ture. It is possible, however, to give a quantitative comparison by converting the dimen

sionless pressures, p , which are generated in any F.E. solution to actual pressures, P , by 

the transformation P  = r)V/(RHo)?p. For example, in Figure 5.16 (a) experimental 

data for a fully-flooded flow, in which Malone estimated the flow parameters to be given 

by A = 0.503, Ca =  0.067, R/Hq =  400 and 6C =  33°, is compared with theoretical 

predictions for the same set o f parameters (and Re =  0.0) from (i) the fully-flooded 

model, (ii) the starved model with A set equal to 0.5. Theoretical predictions from 

the former (where A is predicted to equal 0.66) agree well with the experimental data, 

although there is a discrepancy between their contact line positions. Meanwhile, those 

from the latter show a marked divergence from the data near the nip -  this is to be 

expected since their shapes are quite different when A = 0.5 -  but they agree reasonably 

well near the downstream contact line. The pressures shown in Figure 5.16 (b) relate 

to an ultra-starved flow with parameters Ca =  0.0087, R/Hq =  400, 0C =  33° and 

A =  0.139. In this case the agreement between the F.E. predictions and experimental 

data is excellent, except in the region close to the nip. Note that the magnitudes of the 

pressures shown in Figures 5.15 - 5.16 are 0(100 Nm -2 ) which is extremely small com

pared to atmospheric pressure (2 x 10s Nm~2). We conclude this section by proposing 

a physical mechanism which explains why the pressures in the ultra-starved case are 

entirely sub-ambient.

In Chapter 4 we saw that at a curved surface equilibrium is maintained by a balance 

of normal stresses due to viscosity, surface tension and atmospheric pressure. Since, in 

most situations, the contribution to the viscous term due to liquid velocities near the 

free surface is small compared to the liquid pressure (see Batchelor [1985] p 100), this
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normal stress balance is usually written as

P -  Pa
T

Rcurv
(5.6)

P, Pa, T  and 12curu having been defined earlier. Consequently, there is a ‘pressure 

drop’ across the free surface of magnitude T/RCUrv due to the surface tension of the 

liquid.

In a typical fully-flooded situation, the magnitudes of these pressure reductions 

due to surface tension are negligible compared to the magnitudes of the hydrodynamic 

pressures generated by the ‘squeezing action’ of the converging geometry on the inlet 

side and the converse effect due to the diverging geometry on the downstream side. 

However, in a typical ultra-starved case the lower roller speeds and viscosities (see 

§§1.3.3) mean that the ‘squeezing action’ is drastically curtailed with the result that 

the hydrodynamic pressures are only the same order of magnitude as the negative 

pressures caused by surface tension effects (see Malone [1992], Chapter 6). Now because 

Figure 5.6 demonstrates that the radius of curvature of the upstream free surface is 

much smaller than that of the downstream one in an ultra-starved flow, it also implies 

that the liquid pressure near the former is significantly lower (i.e. more sub-ambient) 

than it is near the latter. This observation, allied to the fact that the magnitudes of 

the hydrodynamic pressures due to liquid motion are fixed for any given ultra-starved 

flow, led to the hypothesis that the free surface positions (and hence their curvatures) 

adjust until the difference in the sub-ambient pressures (—T/Rcurv ) between the free 

surfaces can be bridged by these monotonically increasing, hydrodynamically-generated 

pressures. Moreover, in Chapter 7 of his thesis, Malone [1992] develops this argument 

to explain his experimental observation that the upstream free surface is more prone 

to instability than the downstream one; however this point is not pursued here.
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5.4 The Effects of Starvation in Forward Roll Coating

5.4.1 Introduction

In previous sections, we have obtained theoretical predictions for the flow in a forward 

roll coater, under the two extremes of starvation, which agree reasonably well with 

experiment. We are now able to undertake the first sytematic investigation into the 

flow field transition that occurs in a forward roll coater as the flux is reduced from a 

fully-flooded to an ultra-starved value. This is achieved by monitoring how the velocity 

and pressure fields, obtained from numerical solutions of a starved flow model similar 

to the one described in §§5.3.3, change as the dimensionless flux A is decreased over the 

entire range of starvation, i.e. also including moderately-starved flow.

These F.E. predictions exhibit interesting transitions in both the velocity and pres

sure fields as the flux is reduced from its fully-flooded value which are compared with the 

analytical predictions given in Chapters 2-3 and Malone’s flow visualisations of fully- 

flooded, moderately-starved and ultra-starved forward roll coating. Unfortunately, the 

fact that both rollers are moving meant that he was unable to measure pressures in the 

two-roll system, so the F.E. pressure predictions are compared with the experimental 

data for the flat plate/ roller geometry instead. Finally, F.E. predictions of the film 

thickness ratio T1/T2 for 5  ^ 1 are obtained over the whole starvation range in order 

to test the hypothesis of §§3.3.3 that T1/T2 is all but independent of the degree of 

starvation.

5.4.2 A Numerical Model of Starved Flow in a Forward Roll Coater

The model of starved forward roll coating adopted here is strongly influenced by the 

model described in §§5.3.3. Once again we assume that lubrication theory gives an 

accurate description o f the flow in the nip region, regardless o f the degree of starvation, 

and impose A (defined now by equation (4.89)) as a parameter into the nip lubrication 

velocity profile (4.90), thereby removing the need for a nip pressure condition (see 

§§5.3.3). As in §4.6, we restrict attention to the case in which the roller radii are equal, 

i.e. any asymmetry is due only to unequal roller speeds.



Chapter 5: Further Results in Forward Roll Coating 191

Apart from the conditions at the nip, all other boundary conditions for the starved 

case, namely those at the roller surfaces, the downstream free surface and outflow 

boundaries are identical to those for the fully-flooded situation shown in Figure 4.27. 

In the next section we present theoretical predictions obtained by solving this starved 

forward roll coating model numerically by the Galerkin F.E. method and compare the 

main features of the predicted flow transition with those observed experimentally.

5.4.3 Results and Discussion

In this section we investigate the nature of the flow transition that occurs in a for

ward roll coater when the flux passing through the nip is gradually reduced from a 

fully-flooded to an ultra-starved value. As in §§5.3.4, this is achieved by comparing 

theoretical flow predictions, obtained from F.E. solutions of the starved flow model 

over a range of values of the dimensionless flux A, with Malone’s experimental findings 

for similar situations. Once again, we are able to illustrate the flow transition predicted 

by the F.E. method more conveniently by simply presenting solutions in which only A 

varies since the transition is qualitatively unchanged by variations in either Ca, S or 

R/H0 (c.f. Figures 5.12, 5.13).

The computational grids/ mesh generation algorithms chosen to tessellate the flow 

domain, which as before extends between the nip and the downstream free surface, 

are similar to those used in §4.6 for the asymmetric, fully-flooded, forward roll coater. 

However, when the flux A is reduced, continuity considerations imply that the film 

thicknesses on the upper and lower rollers will also be reduced accordingly. This ef

fect can cause meshing problems because it is possible that those elements which are 

downstream of the film-splitting location may become so long and thin that their high 

aspect ratios pose a threat to the accuracy of the solution (see Chung [1978] pp 133- 

138). Hence it is possible that the asymmetric forward roll coating grid shown in Figure 

4.26 (with 204 elements, 469 nodes and 41 spines), which was shown to be suitable for 

the fully-flooded flow with Re =  0.0, Ca =  0.1, S = 1 and R/Hq =  100 in §§4.5.5, 

may not be suitable for moderately- and ultra-starved applications.

In order to test this hypothesis, numerical solutions were obtained in which A was



Chapter 5: Further Results in Forward Roll Coating 192

gradually reduced from its fully-flooded value, A = 1.35, to an ultra-starved value of 

0.3 by performing zeroth order continuation on A -  the effect that this ultra-starvation 

has on the elements in region 2 is shown in Figure 5.17 (a). This solution was then 

compared with the corresponding solution obtained on a second, finer grid -  shown in 

Figure 5.17 (b) -  consisting of 300 elements, 683 nodes and 53 spines. Note that in the 

solutions obtained using grids 5.17 (a), (b), each iteration took approximately 20, 26 

c.p.u. seconds respectively. This study revealed that in changing from grid (a) to (b), 

the most sensitive variable was the film-split parameter X m which changed by less than 

0.1% of its previous value. We conclude from this that the grid shown in Figure 4.26 

is suitable for flows with Ca =  0.1, 5 = 1, R/Ho =  100 in the range 0.3 < A < 1.35, 

and can be used to demonstrate the theoretical transition between fully-flooded and 

moderately-starved forward roll coating.

Figure 5.18 illustates this transition by presenting velocity vectors and dimensionless 

F.E. pressures generated on the symmetry plane (which is equidistant from the upper 

and lower rollers, see Figure 4.13) obtained from numerical solutions with A =  1.35 

(fully-flooded), 1.15, 1.0, 0.9, 0.75 and 0.6. Once again, for clarity of presentation 

each solution is shown on different scales since unilaterally reducing A results in the 

downstream free surface receding towards the nip -  see Figure 5.18 (g) where the free 

surfaces are drawn on a common scale. Meanwhile each point on a given pressure 

profile indicates the (dimensionless) F.E. pressures generated at that position on the 

symmetry plane immediately above the point. As in §§5.3.4, no pressure scales are 

shown here because we are only interested in the shape of the pressure profile and the 

solid line denotes the atmospheric pressure level (p =  0), i.e. pressures below it are 

sub-ambient.

The flow field transition predicts that starving the flow between A = 1.35 and 

A = 0.6 results in the recirculations next to the downstream free surface (which are 

indicated by the presence of small velocity vectors) extending further upstream towards 

the nip. The pressure profile transition is also similar to that observed in the flat 

plate/ roller geometry: in the fully-flooded case the pressure profile has the familiar 

sub-ambient pressure loop, but as the flux is reduced the pressure at the nip falls and for
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flows with A < 1.0, the profile is entirely sub-ambient and without a pressure minimum. 

Furthermore, the pressure profiles for A < 0.9 possess the linear pressure and constant 

pressure regions identified earlier in §§5.3.4.

In the forward roll coating results presented so far, the starvation is only moderate. 

We now investigate the effects of increasing the starvation further until the flow becomes 

ultra-starved. Although the transition between moderately-starved and ultra-starved 

flow in a forward roll coater could be exemplified by presenting solutions for the same 

parameter set, in which A is decreased to an ultra-starved value, this could lead to 

meshing problems as the downstream free surface recedes ever closer to the nip -  see 

Figure 5.18 (g). For this reason it is preferable to counteract this consequence of 

unilaterally reducing A to an ultra-starved value by decreasing Ca to a more realistic 

value for meniscus roll coating because this strengthens the effect of surface tension 

and tends to ‘push’ the free surface away from the nip (see Figure 4.21). Since Malone 

estimated that Ca «  0.017 in his meniscus roll coating experiments, it was deemed 

appropriate to illustrate this transition by presenting solutions with Ca =  0.017, In 

order to test whether the grids shown in Figure 5.17 are suitable for ultra-starved flow 

with Ca =  0.017, numerical solutions for A = 0.2 were obtained using each tessellation 

shown in Figure 5.17. A comparison between these solutions showed that in changing 

from grid (a) —» (b), the most sensitive variable (X m) changed by less than 0.3% of its 

previous value, which implies that both these grids are suitable for ultra-starved flow in 

this parameter range. However, owing to the fact that F.E. solutions for ultra-starved 

flow were required over a wide velocity ratio range (see later), it was decided to use 

grid (b) to obtain all ultra-starved solutions.

Figure 5.19 illustrates the theoretical transition between moderately-starved and 

ultra-starved flow in a forward roll coater predicted by the F.E. method by presenting 

velocity vectors and dimensionless F.E. pressures generated on the symmetry plane for 

A =0.4, 0.3 and 0.2. These results predict that an effect of decreasing A in this range 

is to strengthen the recirculations until they eventually pass through the nip, while 

the effect on the downstream free surface position is shown in Figure 5.19 (d). Note 

that for A = 0.3 and A =  0.2, these recirculations actually extend upstream of the nip
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because the lubrication velocity profile condition (4.90) imposes reverse flow at the nip 

for A < 1/3 when 5  = 1. Finally, the ultra-starved pressure profiles are similar to 

those shown in Figure 5.18 for A < 0.9, although their constant pressure regions extend 

further upstream from the free surface towards the nip.

These flow transition predictions are now compared with Malone’s experiments for 

similar flow situations which he performed on an experimental rig where the radius 

of each roller=25mm and H0 (also estimated by the feeler guage technique)=225 mi

crometres. We consider the velocity field transition first. A typical flow visualisation 

for the fully-flooded situation, already shown in Figure 1.7, agrees with G.I. Taylor’s 

[1963] observation that the flow field divides into two parts: a two-dimensional portion 

in the immediate vicinity of the (downstream) coating mensicus and a nearly rectilinear 

portion elsewhere.

The flow visualisations of starved forward roll coating shown in Figures 5.20 (a), 

(b) (with the rollers moving from left to right and starvation in the latter greater 

than in the former) form the link between the fully-flooded (Figure 1.7) and ultra- 

starved (Figure 2.15 (a)) situations. They clearly demonstrate that the recirculations 

extend further upstream towards the nip when the starvation is increased, which is in 

qualitative agreement with the predictions of Figure 5.18,5.19. Finally, when starvation 

is increased further from the level in Figure 5.20 (b) the recirculations eventually pass 

through the nip, leading to the ultra-starved (meniscus roll coating) situation depicted 

in figure 2.15 (a) where the existence of two large eddies is apparent.

Turning now to the pressures for starved forward roll coating, it is evident that 

the theoretical pressure transition in this case shares all the features of that predicted 

in the flat plate/ roller geometry, except that in the former the ‘critical’ value of A 

marking the disappearance of a downstream pressure minimum is A = 1.0 (note that 

this is also predicted by the pressure gradient (4.78)) compared to A =  0.5 in the 

latter. Consequently, the F.E. predictions for the two roll system are also in qualitative 

agreement with the experimental pressure profiles given in Figure 5.IS, although the 

theory predicts a more rapid disappearance of the pressure minimum than is manifested 

by the data. The free surface curvature argument given in §§5.3.4 can also be invoked
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to explain the existence of entirely sub-ambient pressures in the meniscus roll coating 

situation -  see Figure 1.5. Finally, we note that both the F.E. pressure predictions and 

experimental data support the analytical prediction of the zero flux model that the 

pressure gradient is constant in the central core of a meniscus roll coating bead.

The next set of F.E. predictions investigates how the velocity field o f a forward roll 

coater is affected by changing the velocity ratio 5. For presentational purposes, it is 

convenient to illustrate this feature by reducing A and Ca below those values which 

have already been used in Figure 5.19 because this reinforces the ‘double-eddy’ structure 

of meniscus roll coating. After a process of trial and error, it was decided that this 

characteristic is amply demonstrated by the velocity vectors from numerical solutions 

of ultra-starved flow with parameters Re =  0.0, Ca =  0.002, R/Ho =  100, A =  0.08 

with 5=1 , 2 and 3. These results, shown in Figure 5.21, clearly demonstrate the 

‘double-eddy’ structure of forward meniscus roll coating and predict that the ratio of 

the sizes of the upper and lower eddies increases when 5 increases -  in agreement with 

the experimental and analytical predictions shown in Figures 2.15, 2.13 respectively.

The last two sets of numerical results exhibit F.E. predictions for the film thickness 

ratio Ti /T2 in forward roll coating over the entire range of starvation from fully-flooded 

to ultra-starved flow. Figure 5.22, for example, shows F.E. predictions of Ti/T2 for flow 

with Re =  0.0, Ca =  0.1, R/Hq =  100 in the velocity ratio range 0.1 < 5  < 4.0 where 

the inlet is (i) fully-flooded (A «1.35), (ii) moderately-starved (A=1.0, 0.6). These 

results, which have been obtained using grid (a) of Figure 5.17, are compared with 

Malone’s average film thickness data, Benkreira et al’s [1981] correlation and Savage’s 

[1992] ’stagnation-point’ model, all of which relate to the fully-flooded situation. Note 

that once again the results are presented on a logarithmic scale in order to expedite a 

convenient comparison with Benkreira et al’s correlation. These results are extremely 

interesting since the F.E. predictions are almost independent of the degree of (moder

ate) starvation. Moreover, they are in good agreement with the fully-flooded predic

tions, shown in Figure 5.1, for the same velocity ratio range (i.e. they closely satisfy 

T\/T2 «  50,65) and are also in reasonable agreement with Malone’s fully-flooded data 

and Savage’s theoretical prediction.
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Finally, Figure 5.23 shows F.E. predictions of T1/T2 for flows with Re =  0.0, Ca =  

0.017, R/Ho =  100 in the range 0.1 < 5  < 2.0 where A=0.4, 0.3 and 0.2. These F.E. 

predictions, which in this case are obtained using grid (b) of Figure 5.17, are similar 

to the moderately-starved results shown in Figure 5.22 (i.e. once again T1 /T 2 «  50,65) 

and agree reasonably well with Malone’s average film thickness data for meniscus roll 

coating, except near 5  =  0.2. Note that they also support the analytical film thickness 

model for meniscus roll coating, developed in Chapter 3, since these F.E. predictions 

satisfy T1/T2 «  S (5  +  3 ) /( l  +  35) over the entire velocity ratio range.

5.5 Summary of F.E. Predictions for Starved Flow

A summary is now given of the main features of above F.E. predictions for starved flow 

in roll coating systems and a more precise definition of ultra-starvation than has been 

possible up until now is proposed.

Consider the velocity field predictions first. In the fully-flooded case, the flow field 

divides into two regions: a two-dimensional portion in the immediate vicinity of the 

downstream meniscus and a nearly rectilinear portion elsewhere. Meanwhile when the 

flux is reduced from its fully-flooded value, the relative sizes of the two-dimensional and 

rectilinear portions increases until the recirculation region eventually extends upstream 

of the nip. This theoretical transition is supported by Malone’s flow visualisations in 

both the flat plate/ roller and two roll systems.

The transition in the pressure field, predicted by the F.E method, is also very 

interesting. In the fully-flooded case, the profile exhibits the familiar sub-ambient 

pressure loop, but as the flux is reduced the pressure at the nip falls until the profile 

has no minimum point and is entirely sub-ambient. When the flux is reduced below the 

critical point at which the downstream pressure minimum disappears -  A=1.0, 0.5 for 

the two roll and flat plate/ roller systems respectively -  the profile quickly assumes a 

shape in which a linear pressure region near the nip is connected to a constant pressure 

region which extends up to the downstream meniscus. These predictions are in broad 

agreement with Malone’s experimental profiles for flow in the flat plate/ roller geometry,
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although the downstream pressure minimum disappears more rapidly when the inlet is 

starved in the former than it does in the latter. Furthermore, the linear experimental 

profile measurements in the central core of ultra-starved flow in a flat plate/ roller 

geometry provide strong evidence in support of the linear pressure profile predictions 

from the zero flux model and consequently lends credence to the assumptions of the 

small flux model developed in Chapter 3.

The F.E. film thickness ratio predictions for starved roll coating shown in Figures 

5.22, 5.23 agree reasonably well with available experimental data (except for low 5 

values) and are almost independent of the degree of starvation, appearing to be pro

portional to 5 065 in their respective velocity ratio ranges. Hence, notwithstanding the 

inevitable meshing problems caused by, and consequent unreliability associated with, 

numerical predictions for ultra-starved flows with low velocity ratios, these predictions 

seem to support the hypothesis of §§3.3.3 that T1/T2 is unaffected by starvation. Actu

ally, the F.E. predictions can be summarized more succinctly by noting that, owing to 

the neglect of gravity in the numerical solutions, if the predicted ratio for a flow with 

5 > 1 is a say, then the corresponding ratio for a flow with velocity ratio 1 /5  should be 

equal to 1 /a. Indeed this is the case in all the F.E. solutions reported here. Hence, by 

the above argument, even though the F.E. predictions shown in Figures 5.22, 5.23 only 

extend over the ranges 0.1 < 5 < 4.0 and 0.1 < 5  < 2.0 respectively, they encapsulate 

information over the range 0.1 < 5 < 10.0. Therefore these predictions encourage one 

to speculate that the F.E. method yields T1 /T 2 «  5 0,65 for 0.1 < 5 < 10 over the entire 

range of starvation, although greater confidence in this assertion can only be provided 

by a more extensive F.E. study with more robust numerical methods.

Finally, we are now in a position to give a more precise definition of ultra-starvation 

which allows it to be distinguished from cases of moderate-starvation. This is simply 

that a flow becomes ultra-starved when the recirculations first touch the upstream free 

surface -  the situation depicted in Figure 5.20 (b). Unfortunately, since our starved flow 

models are restricted to the region between the nip and the downstream free surface, 

they are unable to predict when this critical point arises in practice. Nevertheless, 

owing to the fact that the upstream free surface is close to the nip in the meniscus roll
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coating situation (see Figure 1.5), a useful indicator for the onset of ultra-starvation is 

when the recirculations first pass upstream of the nip. This feature can be predicted by 

the starved flow models since they show that the recirculations extend past the nip in 

(i) a flat plate/ roller geometry, (ii) the two roll system with 5  =  1 when A (defined in 

their respective sections) < 1/3 because their associated velocity profiles, (5.3), (4.90) 

respectively, impose reverse flow at the nip.
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FILM THICKNESS x FULLY-FLOODED EXPERIMENTAL DATA (MALONE [1992]) 
RATIO □ Ca = o.i
Ti/Ti A Ca = 0.5

Figure 5.1: F.E. Predictions of T\jTi in Asymmetric, Fully-Flooded, Forward Roll 

Coating with Re =  0.0, R/H0 =  200
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Figure 5.2: Element Distortion in Region 2 of Asymmetric Roll Coating Grids with 

Re =  0.0, R/H0 =  200: (a) Ca = 0.1, S =  40.0, (b) Ca =  0.5, S =  30.0, (c) 

Ca =  2.0, 5 = 26.0
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Figure 5.2 (continued)

y

Figure 5.3: The Effect of Element Distortion on the Invertibility of an Isoparametric 

Mapping (Strang and Fix [1973])

X
 A
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Figure 5.4: The Flat Plate/ Roller Geometry

Flat plate : « = « = ° Static wetting line : « = « = o; u  = cOSec

Figure 5.5: A Simplified Model For Flow in a Flat Plate/ Roller Geometry (Coyle et 

al [1986])
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NIP
i

Figure 5.6: Typical Free Surface Positions in an Ultra-Starved Flow in the Flat Plate 

/  Roller Geometry

Figure 5.7: Elements in Region 2 of Grids used to Obtain F.E. Solutions of Flow with 

Re =  0.0, Ca =  0.1, RJHo =  100, 0C = 90°: (a) 102 elements, 245 nodes; (b) 150 

elements, 357 nodes; (c) 248 elements, 567 nodes
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Figure 5.8: The Effect of Imposed Contact Angle 6C on Downstream Free Surface 

Profiles for Flow in a Flat Plate/ Roller Geometry (Re =  0.0, Ca =  0.1, R/Hq — 100)

Figure 5.9: The Effect of Imposing 0C — 33° (and Re — 0.0, Ca =  0.05, R/Hq =  110) 

on Elements in Region 2 of (i) grid (b), (ii) grid (c) of Figure 5.7
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Figure 5.10: The Dependence of the Downstream Free Surface Profile on Capil

lary Number, Ca, for Fully-Flooded Flow in a Flat Plate/ Roller Geometry with 

Re =  0.0, R/Hq =  110, 6C =  33°

(a)

(1) FULLY-FLOODED (A.0.66), (2) STARVED (A «0.50)

Figure 5.11: Comparison Between Theoretical Prediction and Experimental Mea

surements of Downstream Free Surface Profiles in a Flat Plate/ Roller Geome

try: (a) Fully-Flooded (Ca =  0.05, R/H0 =  110, 8C =  33°), (b) Ultra-Starved 

(A =  0.13, Ca =  0.0065, R/H0 =  110, 8C =  33°)
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(a)

(1) FLOW FIELD

NIP CONTACT LINE
ATMOSPHERIC PRESSURE LEVEL ii

ii

B
B
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(b)

(1) FLOW FIELD

Figure 5.12: The Effects of Starvation on Flow in a Flat Plate/ Roller Geometry I: Mod

erate-Starvation with Re =  0.0, Ca — 0.05, RfHo =  110, 0C =  33°; (a) Fully-Flooded 

(A = 0.66); (b) A = 0.55; (c) A = 0.5; (d) A = 0.45; (e) A =  0.35; (f) A =  0.25; (g) 

Effect on Downstream Free Surface Profile
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( c )

(1) FLOW FIELD

(d)

(1) FLOW FIELD
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Figure 5.12 (continued)
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(1) FLOW FIELD
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NIP CONTACT LINE
ATMOSPHERIC PRESSURE LEVEL vI/

■
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(f)

(1) FLOW FIELD

NIP CONTACT LINE
ATMOSPHERIC PRESSURE LEVEL .

■
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(g)

0.35 0.50 0.66

Figure 5.12 (continued)
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(a)

(1) FLOU FIELO

NIP CONTACT LINE
ATMOSPHERIC PRESSURE LEVEL .

■ ■ ■

■

(b)

(t) FLOW FIELD

NIP CONTACT LINE
ATMOSPHERIC PRESSURE LEVEL ,

>!_________________________________       JK

■ ■ ■ ■ ■ ■ ■

Figure 5.13: The Effects of Starvation on Flow in a Flat Plate /  Roller Geometry II: 

Ultra-Starvation with Re =  0.0, Ca =  0.0065, R/Ho =  110, 0C =  33°; (a) A =  0.2; (b) 

A =  0.13; (c) A = 0.07; (d) Effect on Downstream Free Surface Profile
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(0
(1) FLOW FIELD

(2) DIMENSIONLESS F.E. PRESSURES ON UPPER PLATE

NIP CONTACT LINE
, ATMOSPHERIC PRESSURE LEVEL ,

(d)

Figure 5.13 (continued)



Chapter 5: Further Results in Forward Roll Coating 211

(b)

(c)

(d)

Figure 5.14: Malone’s Experimental Flow Visualisations of Flow in a Flat Plate/ Roller 

Geometry: (a) Fully-Flooded; (1>) Moderately-Starved; (c) Moderately-Starved; (d)

Ultra-Starved
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Figure 5.15: Malone’s Experimental Pressure Profiles in a Flat Plate/ Roller Geom

etry: (a) Fully-Flooded to Moderately-Starved Flow; (b) Moderately-Starved to Ul

tra-Starved Flow
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(»)

N I P  DOWNSTREAM REGION

NIP DOWNSTREAM REGION

Figure 5.16: A Quantitative Comparison Between Theoretical (F.E.) and Exper

imental (Malone [1992]) Pressure Profiles in a Flat Plate/ Roller Geometry: (a) 

Fully-Flooded -  Ca =  0.067, 0C =  33°, R/Hq =  400, (b) Ultra-Starved -  

Ca = 0.0087, ec =  33°, R/H0 =  400
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Figure 5.17: F.E. Grids Used in Ultra-Starved Forward Roll Coating with 

Re =  0.0, Ca =  0.1, R/Ho =  100, A = 0.3, S = 1.0: (a) 204 elements, 469 nodes, (b) 

300 elements, 683 nodes
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■

■ ■

Figure 5.18: The Effects of Starvation in a Forward Roll Coater I: Fully-Flooded 

to Moderate-Starvation with Re =  0.0, Co =  0.1, 5 = 1.0, R/H0 =  100; (a) 

Fully-Flooded (A =  1.35); (b) A = 1.15; (c) A = 1.0; (d) A =  0.9; (e) A = 0.75; 

(f) A = 0.6; (g) Effect on the Downstream Free Surface Profile
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(2) DIMENSIONLESS F.E. PRESSURES ON SYMMETRY PLANE 
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Figure 5.18 (continued)
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NIP
C2) DIMENSIONLESS F.E. PRESSURES ON SYMMETRY PLANE 

ATMOSPHERIC PRESSURE LEVEL

■

(0

(1) FLOV FIELD

NIP
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Figure 5.18 (continued)
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Figure 5.18 (continued)

A

n
n n n b o  b

Figure 5.19: The Effects of Starvation in a Forward Roll Coater II: Moderate- to 

Ultra-Starvation with Re =  0.0, Cu = 0.017, 5  = 1.0, R/H0 =  100; (a) A =  0.4; (b) 

A = 0.3; (c) A = 0.2; (d) Effect on the Downstream Free Surface Profile
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Figure 5.19 (continued)
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Figure 5.19 (continued)

(a)

( b )

Figure 5.20: Malone’s Flow Visualisations of Starved Forward Roll Coating
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Figure 5.21: Forward Meniscus Roll Coating -  Dependence on Velocity Ratio For 

Re =  0.0, Ca =  0.002, A = 0.08, R fff0 =  100: (a) 5 = 1.0, (b) S =  2.0, (c) 

5  =  3.0
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FILM THICKNESS —  BENKREIRA ET AL C19813 (T,/r2 = 0.87 5 0 65)
RATIO x FULLY-FLOODED EXPERIMENTAL DATA (MALONE [19921)

Tx/T2 d FULLY-FLOODED (A «  1 .35)

4 .0

2.0

1.0

0.5

0 .2

0.1

VELXITY RATIO, S

Figure 5.22: F.E. Predictions of Tt/T2 in Moderately-Starved Forward Roll Coating 

with Re — 0.0, Ca =  0.1, R/Ho — 100
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—  BENKREIRA ET AL C19013 (Ti/T3 = o.87S°-65) 
x ULTRA-STARVED EXPERIMENTAL DATA (MALONE C19921) 

FILM THICKNESS n A = 0.4
RATIO a A = o.3

Figure 5.23: F.E. Predictions of Ty/Ti in Ultra-Starved Forward Roll Coating with 

Re =  0.0, Ca =  0.017, R/H0 = 100
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Chapter 6

Conclusions

6.1 General Discussion

The aim of the present chapter is to provide a brief review of the work contained in this 

thesis and to discuss (i) how it complements previously published work on roll coating, 

(ii) how it might be extended to provide further insights into the fluid mechanics of roll 

coating processes.

In Chapter 2, the flows in lid-driven and open, driven cavities were modelled as 

‘creeping’ flows in rectangular domains. Both problems were formulated as boundary 

value problems for the streamfunction and solved in a semi-analytical form. Stream

lines obtained from the semi-analytical solutions were found to be in excellent agree

ment with (i) previously published results, (ii) solutions obtained numerically using 

a streamfunction-vorticity F.E. method. These flows pointed the way to a model for 

meniscus roll coating under the assumption that the flux through the bead can be 

neglected -  the Zero Flux Model. Streamline patterns obtained both analytically and 

numerically for this problem predicted that, in the forward case, the flow consists of 

two eddies of which the largest eddy is associated with, and adjacent to, the faster lid. 

This prediction agrees well with Malone’s experimental flow visualisations of forward 

meniscus roll coating in which he observed two eddies whose relative sizes depended on 

the velocity ratio.

This ‘double-eddy’ streamline pattern is significantly different from that observed

225
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in the fully-flooded case in which the flow in the nip region is uni-directional. Moreover 

the Zero Flux model predicts that in the central ‘ core’ of the bead, i.e. sufficiently far 

from the meniscii, the flow is horizontal and has a constant pressure gradient whose 

value is proportional to (1 +  S)/H*2 -  this is in marked contrast to that observed in 

fully-flooded roll coating which has pressure maxima and minima.

In Chapter 3 the prediction that there is a constant pressure gradient in the cen

tral ‘core’ of the bead led to the development of a simple model for the ‘core’ flow 

when a small, non-zero flux passes through the bead -  the small flux model. This 

‘Poiseuille+Couette’ model, combined with the experimental observation that in for

ward meniscus roll coating the eddies are separated by a jet of liquid moving in an 

‘S’-shape between them, enabled a predictive model for the average film thicknesses in 

forward mensicus roll coating to be developed. This model predicts that the ratio of 

average film thicknesses on the upper and lower rollers T1/T2 = S(S + 3 )/(3 S +  1) -  

a function of the roll-speed ratio only -  and agrees well with Malone’s experimental 

data. Surprisingly, this is the same result as was obtained by Savage [1992] for the 

fully-flooded case; there is no obvious reason why they are the same. These film thick

ness ratio predictions were used to refine the boundary value problem arising from the 

Zero Flux model to incorporate a small flux through the bead. Streamlines obtained 

from a numerical (F.E.) solution of this refined boundary value problem agreed well 

with Malone’s flow visualisations of forward meniscus roll coating.

Unfortunately, the analytical models of meniscus roll coating developed in Chapters 

2 and 3 are unable to properly account for surface tension effects at a curved free 

surface. As a result, a F.E. free surface FORTRAN code, based on Kistler’s [1983] 

‘Spine Method’, was developed in Chapter 4. It was applied, at first, to relatively 

simple problems, namely the flows in lid-driven and open, driven cavities, and to the 

Zero Flux model. As explained in Appendix B, the practical problem of evaluating 

the F.E. equations was alleviated by Isoparametrically mapping each element into a 

standard shape; F.E. results were obtained using different quadrature schemes in order 

to evaluate their suitability.

The code was then extended to accomodate the ‘Spine Method’ for solving free
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surface flow problems and the practical complications introduced by the presence of 

free surfaces (e.g. balancing stresses at the free surface and the need to evaluate free 

surface integrals) discussed. This method was described by solving the relatively simple 

slot coating problem and the F.E. results obtained using the code developed here are 

in excellent agreement with previously published results. The slot coating code was 

then modified to solve Coyle et al’s [1986] model of fully-flooded forward roll coating 

in which the flow upstream of the nip was simulated by the imposition of lubrication 

conditions at the nip; the relatively simple symmetric case was solved first.

Owing to the extreme sensitivity of both the position and shape of the downstream 

free surface in forward roll coating to the operating parameters, it was necessary to 

employ a mesh generation algorithm due to Coyle et al [1986] in order to produce an 

even tessellation of the flow domain into elements. This algorithm, coupled with the 

‘Spine Method’ , enabled predictions for (i) the velocity and pressure fields as a function 

of Ca, (ii) the dimensionless flux through the nip, and (iii) the film-split ting position 

to be obtained, all of which were in excellent agreement with previously published ex

perimental data and F.E. predictions. However, it was apparent that a particular mesh 

generation algorithm cannot be suitable for every conceivable set of flow parameters 

since severe convergence difficulties were experienced for high velocity ratio flows. A 

possible mechanism for the cause of these difficulties was proposed in terms of element 

distortion in the downstream region of the F.E. grids. The code was then modified to 

accomodate asymmetry: F.E. predictions of the film thickness ratio, T1/T2, were found 

to be in reasonable agreement with the F.E. predictions of Coyle et al [1986]. As in 

the symmetric case, the range of velocity ratio values over which solutions could be 

obtained, using F.E. grids based on Coyle et al’s [1986] mesh generation algorithm, was 

limited by element distortion.

Chapter 5 began with a more extensive investigation into the relationship between 

the film thickness ratio T1 /T 2 and the velocity ratio 5  (in the range 0.1 < 5 < 40) during 

fully-flooded forward roll coating. In the range 0.1 < 5  < 15, the F.E. predictions for 

Ti/T2 are proportional to S0-65 -  in good agreement with Benkreira et al [1981], Coyle 

et al [1986] and reasonable agreement with Savage’s [1992] model -  but for 5  > 15 the
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predictions begin to exhibit a Ca dependence and diverge from the S0-65 power law. 

Even though the F.E. predictions for 5 > 15 are in broad agreement with Savage’s 

[1992] analytical result, we concluded that there is a need for more robust numerical 

techniques and fuller experimental data before these high velocity ratio predictions can 

be accepted with any degree of confidence. Attention was then turned to the effects 

of starvation in roll coating, beginning with the simplified flat plate/ roller geometry. 

Models for both fully-flooded and starved flow in this geometry were described, in 

which the flow domain extended between the nip and downstream free surface, and the 

resulting free surface boundary value problems solved by the F.E. method. Theoretical 

predictions for the downstream free surface position and pressure profile in the bead 

for examples of both flows are in reasonable agreement with experiment.

A numerical (F.E.) study into the effects of starvation in the flat plate/ roller 

geometry produced many interesting predictions. For example, the velocity field was 

found to experience a transition in passing from a fully-flooded to an ultra-starved 

inlet condition. In the former, the flow field divides into two adjoining portions with 

rectilinear flow in the nip region and a recirculation region in the immediate vicinity 

of the downstream mensicus. As the flux is reduced, the ratio of the sizes of the 

two-dimensional and rectilinear portions increases until the recirculation eventually 

extends upstream of the nip and the ultra-starved situation is achieved where the flow 

field consists of a single eddy above a thin film of liquid attached to the roller surface. 

These predictions are borne out by Malone’s experimental flow visualisations for similar 

situations.

Meanwhile, the predicted transition in the pressure field showed a transformation 

from the characteristic fully-flooded profile, with pressure maxima and minima, to the 

ultra-starved case where the pressure field is entirely sub-ambient and consists of a 

linear pressure region near the nip adjoining a constant pressure region near the down

stream meniscus. This prediction is also in accord with Malone’s findings, although the 

predicted disappearance of the downstream pressure minimum (at A ss 0.5) occurs more 

rapidly than is manifested by the data (A ss 0.298). A mechanism for the existence of 

an entirely sub-ambient pressure field, in the ultra-starved case, was proposed in terms
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of the observation that the curvatures of the upstream and downstream free surfaces 

are quite different.

Chapter 5 concluded with a simple model of starved flow in forward roll coating 

in which, as in the model of starved flow in a flat plate/ roller geometry, the flow 

domain is restricted to the region between the nip and downstream free surface. The 

numerical (F.E.) solutions of the resulting free surface problem predicted transitions 

in the velocity and pressure fields similar to those obtained in the flat plate/ roller 

geometry. For example, in the former reducing A also had the effect of increasing the 

relative sizes of the rectilinear and two-dimensional portions, but for the two roll system 

the ultra-starved flow field consists of upper and lower eddies with liquid flowing in a 

reverse jet between them. This transition is also in qualitative agreement with Malone’s 

flow visualisations of the two roll system. The theoretical transition in the latter is 

basically the same as that predicted for the flat plate/ roller geometry, although in the 

two roll system the ‘critical’ value of A (defined now by equation (4.89)) marking the 

disappearance of the pressure minimum is predicted to be at around A =  1.0.

Finally a F.E. investigation into how the film thickness ratio T\/T-i depends on 

the degree of starvation for 5 in the range 0.1 < 5  < 10 was performed. The F.E. 

predictions are almost independent of the degree of starvation, with T1 /T 2 »  50 65, and 

agree well with Malone’s data for fully-flooded and ultra-starved forward roll coating. 

They are also in good agreement with the analytical film thickness model developed in 

Chapter 3 since the F.E. predictions satisfy T1/T2 ss 5 (5  +  3 )/(3 5  +  1) in this velocity 

ratio range. Nevertheless, we concluded that these F.E. predictions still need to be 

corroborated by alternative ones obtained using more robust numerical techniques.

6.2 Suggestions for Future Work

An important feature of the work presented in this thesis has been the interdependence 

between analytical, computational and experimental analyses of roll coating. The fol

lowing suggestions for future work, although directed to the theoretician, would be 

meaningless without reliable experimental data against which theoretical predictions
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can be compared.

(i) Although the Zero Flux and small flux models described in Chapters 2 and 3 

respectively are applicable to both the forward and reverse modes of roll coating, 

the film thickness model given is only valid in the forward meniscus roll coating 

case. An analytical film thickness model is still to be found in the reverse case.

(ii) The instabilities to which meniscus roll coating are susceptible have not been 

described here, but those described by Malone [1992] may prove to be tractable 

to a simple analytical model, perhaps similar to those given by Savage [1984] and 

Carter and Savage [1987] for the fully-flooded case.

(iii) The greatest difficulty experienced in the F.E. analysis of roll coating presented 

here is due to element distortion under certain circumstances. What is needed 

is a systematic means of mesh generation in which the positions of the nodes 

are chosen to satisfy rigorous mathematical criteria; ideally this should include a 

facility to refine the grid locally, for example near a dynamic wetting line, and 

the flexibility to handle elements with different shapes, for example triangular 

and quadrilateral, in the same tessellation -  see Shephard [1988] for an extensive 

review of mesh generation techniques. If this can be done, then the ultimate 

objective of a ‘universal’ grid, in the sense that it is suitable for most conditions 

which occur in practice, may be achievable.

(iv) The F.E. analysis should be extended to include both upstream and downstream 

free surfaces, and the dynamic wetting line where the upstream free surface meets 

the upper roller. This ought to be feasible since Coyle et al [1990 a] have sur

mounted similar difficulties in their F.E. analysis of fully-flooded reverse roll coat

ing. Once this has been achieved the analysis should then be extended to the full 

reverse meniscus roll coating problem.

(v) Bixler [1982] and Coyle [1984] have developed a technique for analysing the sta

bility of coating flows based on the F.E. method. Their technique, which has 

been recently applied to the fully-flooded case (Coyle et al [1990 b]), should also
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be applicable to mensicus roll coating.

(vi) In this thesis the liquid in the roll coater is assumed to be Newtonian; however 

most industrial coating liquids are non-Newtonian. Hence the F.E. analysis should 

be extended to embody a non-Newtonian rheology (see e.g. Schunk and Scriven 

[1990]). This has already been done for a shear-thinning rheology (Coyle et al 

[1987]) and may be possible for liquids with, for example, elastic or thixotropic 

properties.

(vii) In the work reported in this thesis the rollers have been assumed to be rigid and 

of equal size. A final suggestion for an extension to the theory developed here 

is to have deformable rollers of unequal size. The latter is easy to implement 

whereas the former presents greater difficulties, although at first the analysis of 

flows with deformable rollers could proceed along the lines of the work presented 

by Coyle [1988].
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Appendix A

Biorthogonal Series Solutions of 

Cavity-Driven Flows

A .l Smith’s Biorthogonality Relation

In his [1952] paper, Smith examined the bending of a thin, semi-infinite strip using the 

method of Biorthogonal Series Expansions. The equation governing this bending is the 

biharmonic equation

V 4 w =  0 (A .l)

where w is the normal deflection. This equation is solved in the region y > 0,

-1  < x < 1 subject to the ‘Clamped-Edge’ boundary conditions:

dw
u ) =  —  =  0 a t i  =  ± l  (A.2)

He proposed to separate variables and write the variables d2w/dx2, d2w/dy2 as

S  = E  c „ « x ,S„)e-"» . S  = E  (A.3)
 ̂ in *n

where the eigenfunctions 4>"(x,sn), sn) and the eigenvalues s„ are determined

subsequently. Equation (A .l) allied to the compatibility relation

d4w d4w
dy2dx2 dx2dy2 (A.4)

233
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may be rewritten as a single vector equation

d2 U ?  1 2 [ 0 - 1
dx2 +  Sn 0L ^2 J L 1 2

The ‘clamped-edge’ conditions become

4>i = = o at x =  ±1
dx

The form of the expression for d2w/dy2 may be readily integrated to yield

e-«„y

(A.5)

w = cn4>l{x,Sn)

(A.6)

(A.7)

He now faced the problem of determining the coefficients c„. In order to achieve this 

he introduced a generalized Wronskian W  given by

w  = ?} ~ [dip™/dxtdip™/dx]
d<f>i/dx 

dfâ/dx

where ip™, are defined below. It may easily be shown that

•d2(j>i/dx2 

d2(j>2/dx2

dW
dx -  [d2W /dx2,d2i>?/dx2]

w .

' Vi 

<tq

(A.8)

(A.9)

By definition [</>", ViV 1S a soluti°n ° f  (A.5) hence

dW
dx S2n[4’? ,W ]

0 - 1

1 2
+  [d2iP?/dx2,d2iP?/dx2]

4>i
(A .10)

At this stage define the equation adjoint to (A.5) as

<P_
dx2 + w , « 1]

0 - 1

1 2
= 0 (A .l l )

If W  is to vanish whenever <P1 =  d<p*/dx =  0, then ip™ =  dip™/dx =  0 also. The 

boundary conditions adjoint to (A.6) are

« •  =  ® 0 at x = ±1daj (A.12)

Now if [V’i"(a:)> V,2>(x )] 311 eigenvector of (A .l l )  corresponding to s and [<f>i(x), $ j(x )]r

is an eigenvector of (A.5) with boundary conditions (A.6) corresponding to s2, then

( * l - S 2n) [V ? ,V ?]
0 - 1

1 2

Vi

Vi

dW
dx (A.13)
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Integrating and using the boundary conditions (A.6), (A .12) yields

r+i .
dx =  0O T .t f  2m]

0  - 1

!  2 . w .

Therefore 1------1oi____ ---
---

1
*-*

3
__

__
1

1 2 > ï .
dx =  0 if s2m ?  si

(A.14)

(A .15)

This is the ‘biorthogonality’ relation and will now be used to solve creeping flows in 

lid-driven and open, driven cavities (see §2.3, 2.4 respectively).

A.2 The Flow in a Lid-Driven Cavity

The boundary value problem shown in Figure 2.2 (b) is even. Hence the eigenfunctions 

sn) in the solution of this problem must also be even; they are even ‘Papkovich- 

Fadle’ eigenfunctions defined by

$ ( * , « „ )

# ? (x >5n)

ipi(x,sn)

s„ sins« coss„x — snx cossn sins„x (A .16)

- (s „ s in s n +  2cossn)coss„x  +  snx coss„ sinsnx (A .17) 

(s„ sins„ — 2 cossn)cossnx — snx cos sn sin snx (A.18) 

sn sin sn cos s„x -  5 „xcossnsinsnx =  <f% (A.19)

The parameter sn is determined from the conditions (A.6) which yield the eigenvalue 

equation for

sin 2sn =  - 2 sn (A.20)

The solutions, sn, o f this eigenvalue relation are complex and must be determined. 

Robbins and Smith [1948] have published a table of the first 10 roots of (A.20) in the 

upper right hand quadrant in increasing order of |̂ n|. In practice, these roots may be 

conveniently determined by using the simple Newton iteration procedure described by 

Robbins and Smith [1948]. For large |sn|, the nth root of (A.20) with positive real and 

imaginary parts is approximated by

2sn «  (2n +  1.5)7r -f tlog(4n +  3)x (A.21)
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This is a convenient start-up approximation for the Newton iteration. The first 40 

upper right hand quadrant solutions of sin2sn =  — 2sn (where sn =  un +  iv„) are given 

in Table A .l.

A .2.1 Determination of the Expansion Coefficients

The technique described in this section is due to Joseph and Sturges [1978]. The 

proposed solution to the lid-driven cavity flow at zero Reynolds number is o f the form

i>(x,y) =  £  (A ne‘ ”b - 2A"> +  Bne (A .22)
- o o  sn

where <f>y(x, sn) is an even Papkovich-Fadle eigenfunction and sn are roots of (A.20). 

If the streamfunction is to be physically meaningful then it must be real. Therefore 

as 4>in(x) = 4%(x) where -  denotes complex conjugate, reality of the streamfunction 

implies A -n =  An,B -n =  Bn.

The boundary conditions on the upper and lower lids (see §2.3) mean that the 

coefficients An, Bn must be selected to match

1 =  E t - 4”  -
— OO 

OO

o =  £ ( A» +
— OO 

OO

o =  E  (Ane-2anA' -  Bn) fi/an

(A.23) 

(A .24) 

(A.25)
— OO 

OO
0 = E  (A" e~2anA* +  *n ) $x h l  (A.26)

— OO

The critical step in determining A „,B n is to apply the biorthogonality relation (A .15) 

to these 4 equations. To prepare for this application, first differentiate (A.24) twice 

with respect to x, using the relation that d2<f>i/dx2 =  s2<f>2(x) to eliminate </>". It is 

then possible to write (A.23) and the twice differentiated (A.24) as

OO

=  £
— OO

(An + Bne~2‘ ” A')  (  ^ + ^4.n(l — Sn) „  _-2«nA* +  S")*3nc
\ & )

sn sn

(A.27)
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S im i la r ly , (A.25) and twice differentiated (A.26) are combined to give

=  £ (Ane~2ênA* +  * „ )|  4,1 | + Ane- 2 a n A *  ( 1  ~  gn) -Qn(l ~l~ s n ) 4>ï

o

n \

The operator V’a)
0 - 1

1 2

(A.28)

dx is then applied to (A.27) and (A.28)

yielding

(A, +  +  £ )  { M ' “ }  =  4 ( A -29)

(A ,e -2“ Â' + B,)Kl +  £  {[*4» ,-2<„A* C1 ~ an) n +  sn)- B n-
sn <®r

Mi, „ }  =  0 (A.30)

where

and

K, = J*  [V’i.V ’a]
0 -1 V i "
1 2 . 2̂ .

dx =  —4 cos4 Si (A.31)

Mi,n — j  \ —

s/s„{2cos Sl cossn 

(1 +  cos(st -  sn) cos(sj +  s„))

sin(s< +  3n) _  sin(st -  sn) 
(si +  s „)3 (si -  sn)3 .

1

+

1
.(•s/ — -Sr»)2 ( Sl +  Sn y .

} (A.32)

for / ^  n and for l =  n,

Aij = -  cos2 si Q s 2 +  cos2 sî j (A.33)

(A.29) and (A.30) form an infinite set to be solved for the coefficients An,B „  for 

n =  ± 1 ,± 2 , ... which of course cannot be solved in practice. However, they may be 

solved if the streamfunction is truncated after N terms. In this case (A.29), (A.30) 

yield 4N equations for the 4N unknowns, i.e. the real and imaginary parts of An,B n 

for n =  1,..., N. This enables the truncated solution to be found.

A.3 The Flow in an Open, Driven Cavity

The eigenfunctions used in §2.4 for the solution of the flow in an open, driven cavity 

are odd; they are defined by

<t>i(y,Pn) =  Pn cospn sinpny -  pny sinp„ cosp„y (A.34)
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4>2(y>Pn) = -(Pn cosP n - 2 sinpn) sinpny + pny sinpn cospny (A.35)

i>i (y,Pn) =  (Prx cospn + 2 sinpn) sinpny -  pny sinpn cospny (A.36)

V£(y,p„) =  Pn cospn sinp„y -  p„y  sinpn cosp„y =  $  (A.37)

The parameters pn are determined from the condition 4? — dtf"/dy =  0 at y =  — 1 

giving the following eigenvalue relation for pn

sin 2p„ = 2p„ (A.38)

The solutions p„ of this equation are complex. Hillman and Salzer [1943] have published 

a table of the first ten roots of (A.38) in the upper right hand quadrant. These roots 

may be determined by Newton iteration using the approximation

2Pn «  (2n + 0.5)x +  i lo g (4 n + l)x (A .39)

for the nth root with positive real and imaginary parts. The first 40 roots of (A.38) 

(where p„ — x„ ■f  iyn) are given in Table A .l. As noted earlier, the streamfunction ip 

(see equation (2.19)) is real hence C_n = C n, £>_n = D„. The boundary conditions on 

the side walls (see Figure 2.8) mean that the coefficients C„ and Dn must be selected 

to match

1 = £ ( C n - Z ? ne -P "^ )
—oo 
oo

Pn

o =  E ( c " +  ^ c' Pn>l* ) 4
—oo 
oo

0 = E  (Cne~PnA* -  D .)

0 =

pi

k
Pn

E  (C .e - - '* -  +  D „ ) t
—oo Pn

—oo 
oo

(A.40)

(A.41)

(A.42)

(A.43)

Using the same technique as in §A.2, these equations are prepared for the application 

of a biorthogonality condition giving

1

0

0

0

(Cn + Dne~PnA' )  ( I + ( fi,(1~ P”) -
l  V Pn Pn )4>5

= E  \ icne~PnA' +  x>„) { ^  I +  [cnt-**A' iL _ P n l _  D 
^  W a  /  V Pn Pn '

4>ï 
o

(A.44)

k  

0
(A.45)
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In this case, apply the modified biorthogonality operator

to the equations (A.44), (A.45). This can be shown to give

(A.46)

2 -  cos pi -  1 / cos pi =  (Ci +  Die PlA*)ki

+

0 =  (C ,e-n*- + D,)K, + £  { ¡ C . ' - » *  M ,.„}
IZ>  ̂ L Vn Pn J J

where

Ki = J ($,$) 0 - 1 ---
---

1 •

1 2 1---
--

•

dy =  —2 sin4 pi

(A.47)

(A.48)

(A.49)

M,,„ = f °  % fc iy  =
J-l (Pl+PnY \ (Pl+Pn) 2 J

, sin (P n -P i ) (  sin pn sinp/ , sin (pi -  pn)\
+ / V ( P i - Pn) +  2 J

cosf 7)1 — T)_i\
(P n -P lY \ (Pi Pn ) ' 2

(Pl+Pn)2 ' (P l-P n )2
, - . (COS(pi + pn) , COS( p i - p n)+  sinpn sin pi I ----------------- -1-------rnj (A.50)

for I ^ n and for / =  n,

. 2 (  PÌ , sin2 pi 'Ai,i =  - s in 'p ,  l-J- + (A.51)

This infinite system of equations is truncated after N terms so that (A.47), (A.48) yield 

4N equations for the 4N unknowns, i.e. the real and imaginary parts o f C „,D n for 

n =  1, ...N.
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(a.) sin 2sn — 2sn'. sn — un -f- ivn

(b) sin 2p„ — 2pn' Pn — Xn 4" iyn

n Un vn xn Vn
1 2.10620 1.12536 3.74884 1.38434
2 5.35627 1.55157 6.94998 1.67611
3 8.53668 1.77554 10.11926 1.85838
4 11.69918 1.92940 13.27727 1.99157
5 14.85406 2.04685 16.42987 2.09663
6 18.00493 2.14189 19.57941 2.18340
7 21.15341 2.22172 22.72704 2.25732
8 24.30034 2.29055 25.87338 2.32171
9 27.44620 2.35105 29.01883 2.37876
10 30.59130 2.40501 32.16362 2.42996
11 33.73581 2.45372 35.30790 2.47640
12 36.87989 2.49810 38.45180 2.51890
13 40.02363 2.53887 41.59539 2.55807
14 43.16709 2.57656 44.73873 2.59439
15 46.31032 2.61161 47.88187 2.62825
16 49.45337 2.64436 51.02484 2.65997
17 52.59627 2.67510 54.16766 2.68979
18 55.73903 2.70407 57.31037 2.71794
19 58.88168 2.73144 60.45297 2.74459
20 62.02424 2.75740 63.59549 2.76988
21 65.16671 2.78207 66.73792 2.79396
22 68.30912 2.80558 69.88029 2.81694
23 71.45145 2.82804 73.02260 2.83890
24 74.59373 2.84953 76.16486 2.85994
25 77.73597 2.87014 79.30706 2.88014
26 80.87815 2.88993 82.44923 2.89954
27 84.02030 2.90897 85.59136 2.91823
28 87.16241 2.92731 88.73345 2.93624
29 90.30449 2.94500 91.87552 2.95362
30 93.44654 2.96209 95.01755 2.97042
31 96.58856 2.97861 98.15956 2.98667
32 99.73056 2.99461 101.30155 3.00241
33 102.87253 3.01010 104.44351 3.01768
34 106.01449 3.02514 107.58546 3.03249
35 109.15642 3.03973 110.72739 3.04687
36 112.29834 3.05391 113.86930 3.06085
37 115.44025 3.06770 117.01119 3.07445
38 118.58213 3.08112 120.15307 3.08769
39 121.72401 3.09418 123.29494 3.10059
40 124.86587 3.10692 126.43680 3.11317

Table A .l: The first 40 Upper Right Hand Quadrant Roots of (a) sin2s„ = —2s„ and 

(b) sin2p„ = 2p„
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Appendix B

The Streamfunction-Vorticity 

F.E. Method

B.l Introduction

The purpose of this appendix is to introduce a linear F.E. technique for flows with 

negligible fluid inertia (known as the Streamfunction-Vorticity method) and to describe 

how it can be used to obtain numerical solutions of the 3 boundary value problems 

derived in Chapter 2. The philosophy behind and practical implementation o f this 

method is discussed with particular reference to the treatment of the corner singularities 

that exist in each boundary value problem.

However, before describing the streamfunction-vorticity method, it is necessary to 

introduce the concept of a ‘variational principle’.

B .1 .1  V ar ia tio n a l P r in c ip les

Often continuum problems have different but equivalent formulations - a differential 

formulation and a variational formulation. In the differential formulation the problem 

is to integrate a differential equation subject to given boundary conditions. In the 

variational formulation, however, the problem is to extremize, i.e. make stationary, a 

functional, II say, subject to the same boundary conditions (Heubner [1975] p 67). The

242
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functional II is defined as an integral form over the domain SI and boundary dSl,

n  = [  F(a) dSl + f  G(a) ds (B .l)
J n Jan

in which a is the unknown function and F  and G are specified operators. The solution 

a is that which makes II stationary with respect to small changes 6a. Hence we require

« I  =  0 (B.2)

In fact the problem of finding stationarity with respect to the parameters a is an old 

one and is associated with the names of Rayleigh [1870] and Ritz [1909]. In §B.3 we will 

obtain functionals n  for each of the 3 boundary value problems described in Chapter 

2 and show how they enable the F.E. equations to be obtained.

B.2 The Philosophy of the F.E. Method

Let il be a fluid domain with boundary dSl in which the solution of the governing 

equations, subject to known boundary conditions, is sought. The basic idea of the F.E. 

method is to reduce the original continuous flow problem to a discrete analogue by 

subdividing the domain into a number of elements. Within each element the solution 

of the governing differential equations (in this problem ip and u>) are approximated by 

low-order polynomials which are functions of the values of ip and u  at a finite number 

of points (the nodes) touching that element. By combining many small elements we 

obtain a global approximation to the solution of the governing equations in terms of the 

nodal values of ip and u. If there are a total of N nodes and the values of ip and w at 

node k are ipk, u k respectively then this polynomial approximation takes the following 

form
N _  N

# c , y )  =  £  X k( x , y ) i p k , w ( x , y )  =  N k { x , y p k ( B . 3 )
k = 1  k = l

The interpolating functions Nk(x, y) (known as ‘shape functions’ ) are chosen to satisfy

{1 at node k
(B.4)

0 at all other nodes

Equation (B.4) is important because it means that iVjt =  0 inside any element which 

node k does not touch. In practice this leads to a considerable simplification to (B.3)
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enables equation (B.6) to be rewritten as

I(il>,u)= [  
J n

V.(SipVu) +  SuVip) — V (6ip).V lj — V (& j).V ^  4- S(i)l dÜ (B.8)

Applying the divergence theorem to the purely divergent terms yields

du
- L

-S7(Sip).Vu -  V(Su).Vip + S ^  ^ ^ Û^ n )

Since V is a linear operator,

V (8ip) =  SVip , V(Suj) = ¿Vu (B.10)

which means

•u ) = i U
•Vip.Vu + t*r

s* i ü + d‘  (B -U )

This is almost a variational principle -  unfortunately we also need to be able to write 

the boundary integral term as ¿11 for some II. However this can be achieved when the 

boundary conditions for the 3 boundary value problems of interest are included. In 

each problem the boundaries consist of either solid walls, at which no-slip conditions

apply, or planar fluid interfaces, at which a condition of zero shear stress is applied. 

Note that since ip =  0 on each boundary, Sip = 0 on Sfl, so the boundary integral term 

in equation (B .ll), Ian, reduces to

S j/ d son (B.12)

(i) At the Solid Boundaries

The tangential boundary velocity, Vt =  dip/dn, is prescribed. Hence if dQl denotes the 

portion of the boundary formed by solid walls, then the contribution to the boundary 

term in (B .ll)  due to dSi1 is simply

/  Su V, ds 
Jan1 (B.13)

(ii) At Planar Zero Shear Stress Boundaries

In §2.4 we saw that 8u/dy +  dv/dx represents the (dimensionless) shear stress at a 

planar fluid boundary . Hence in terms of the velocity components u =  dip/dy,v =  

-dip/dx,
8u dv _  ahp dhp
dy T dx ~ dy2 dx2 IB-14)
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Since the boundary is flat this enables us to show that either d2ip/dx2 or d2tp/dy2 is

zero, depending on the orientation of the boundary. However it has been seen that

the condition u> =  0 at the planar ‘free’ surface. Consequently =  0 also on the fluid 

boundary so if dSi2 denotes the portion of the boundary at which the zero shear stress 

condition is imposed, the contribution to the boundary term in (B.12) due to dil2 is 

zero.

This means that, in each boundary value problem, the boundary integral term 

(B.12) is simply given by (B.13), which may be rewritten as

The F.E. equations are obtained by requiring stationarity of (B.19) with respect to 

each of the nodal parameters V’j* &k (see e.g. Heubner [1975] p 77, Zienkiewicz [1977] 

p 66). Stationarity with respect to 57/ yields

(B.15)

Hence, at a planar fluid boundary, the zero shear stress condition is equivalent to u  =  0. 

Therefore in the boundary value problems shown in Figures 2.8 and 2.12 we impose

(B.16)

This implies that

so we have demonstrated the existence of a variational principle for each problem where 

the functional n  is defined by

L £ . /a n 1

Substituting the F.E. approximations (B.3) into (B.18) yields

(B.19)

0TT ** r _ f
J [fyNkVk ~ VNi.VNkTj>k]dSl +  /  NiVtds =  0 (B.20) 
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Stationarity with respect to rpj yields

I t  =  -  E  /  VN,.VNk Wfc dfl =  0

Equations (B.20), (B.21) provide 2N F.E. equations for the 2N unknowns 

($k-> wfe ,fc =  1,~JV).

(B.21)

B.4 Corner Singularities

In the cavity-driven flows of Chapter 2, there are difficulties in analysing the flow near 

the corners of the cavity. These corners may be conveniently categorized into 3 types: 

those formed at junctions of (i) a moving wall and a planar ‘free surface’ ; (ii) a moving 

and a stationary wall; and (iii) two stationary walls.

Junctions of type (iii) offer no special difficulties however those of types (i) and (ii) 

are troublesome because under the assumption of no-slip between solid and fluid, the 

fluid velocity is undefined. This leads to the prediction of unphysical singularities in 

the stress and vorticity at the corner (Moffatt [1964], Huh and Scriven [1971]). In fact 

a junction of type (i) is an example of a dynamic wetting line, the subject of which has 

been discussed in §§1.3.2.

In the past, in the numerical solution of problems with corner singularities of types 

(i) and (ii), the inevitable inaccuracies introduced into the solution have been alleviated 

by fine resolution of the computational mesh near these corners. This has proved to 

be reasonably effective in limiting any numerical error to a small neighbourhood of the 

corners, but it can be tedious as more effort has to be expended in producing the mesh.

In this thesis the corner singularities are handled by using a method developed by 

Moffatt [1964] in his classic paper in which he presented simple similarity solutions to 

the creeping flow of a viscous fluid near a sharp corner between two planes. In this 

method, the problem of prescribing boundary conditions on the vorticity very near the 

corners is solved by expanding the streamfunction in a series of separated solutions 

which are functions of r, the distance from the corner and an azimuthal angle 0. This
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expression takes the form

0  = £  r” fp(°) (B.22)
p

where p > 0 and is increasing. Sufficiently close to the corner the leading order term, 

given by fa =  r f i (0), is dominant and in the following analysis it will be obtained for 

examples of both types of corner singularity.

Type (i) Singularity

A type (i) singularity (dynamic wetting line) is formed at the junction of a moving wall 

with a ‘planar’ free surface. An example is illustrated in Figure B.2. In this example 

the moving lid is at 0 =  0 and the ‘planar’ free surface, at which a condition of zero 

shear stress is imposed, is at 0 = x f 2.

The streamfunction ip in the vicinity of the corner is given by the solution of the 

boundary value problem shown in Figure B.2. Following Dean and Montagnon [1949], 

Moffatt [1964] showed that the first order term fa , may be written as fa =  rf\{0) 

where

fi(0) = A cos 5 + B sin0 -f CO cos 0 +  DO sin 0 (B.23)

Note that the boundary conditions may be rewritten in terms of derivatives with respect 

to r and 0 (see Batchelor [1985]); in particular, the condition of zero shear stress is 

expressed by the condition

d̂ xp
002 =  0 at 0 = x/2 (B.24)

The first order solution to the boundary value problem shown in Figure B.2 is

fa -  UrsinO (1 -  20 /*) (B.25)

In polar co-ordinates

IJ L  ( r2É.\ . 1
r dr \ dr )  r2 dO2

so, the first order vorticity defined by = —V 2fa is

AU cos 0w, =  ------------

(B.26)

(B.27)vr
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Note that the vorticity on the free surface is already known to be zero, therefore the 

only condition on vorticity needed is that for the moving lid (6 =  0)

4 U
^  =  ~  (B.28)

In the F.E. solution of a flow with a type (i) singularity, the magnitude o f  the vorticity 

at the node on the lid closest to, but not at, the corner is given by (B.28). The actual 

sign o f the vorticity depends on the relative orientation o f the moving lid and the free 

surface. At a corner node we impose u> =  0 since it lies on the zero shear stress planar 

‘free surface’ .

Type (ii) Singularity

A type (ii) singularity is formed at the junction of a moving and a stationary wall. An 

example is illustrated in Figure B.3. The moving (velocity U) and stationary lids are 

positioned at 0 =  0, tt/ 2 respectively. The first order solution to the boundary value 

problem shown in Figure B.3 is

Ur
V>V =  fy.a - - ^ (7r2s in f l -4 f lc o s f l -  27rflsinfl) (B.29)

with
U

=  ( y a i 4 )r  (47rcos<? -  8 sin») (B.30)

Hence the appropriate boundary conditions on vorticity for the lids are 

(a) Moving Lid (0 =  0)

(b) Stationary Lid (6 — ff/2)

Wj

u> =

4wU
(ir2 — 4)r 

SU

(B.31)

(B.32)(?r2 — 4)r

In the F.E. solutions of flows with a type (ii) singularity, the magnitude of the vorticity

at the node closest to, but not at the corner of (a) the moving lid, (b) the stationary 

lid is given by the magnitudes of (B.31) and (B.32) respectively. The actual sign of the 

vorticity depends on the relative orientation o f  the moving and stationary lids. At the 

corner, r  =  0  so it is not possible to use the above conditions on vorticity. In § § 1 . 3 . 2  

we saw that in  tn n c t  — 1” '------- '  ’
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Note that the vorticity on the free surface is already known to be zero, therefore the 

only condition on vorticity needed is that for the moving lid (0 =  0)

4 Uux =
xr (B.28)

In the F.E. solution of a flow with a type (i) singularity, the magnitude o f the vorticity 

at the node on the lid closest to, but not at, the corner is given by (B.28). The actual 

sign of the vorticity depends on the relative orientation of the moving lid and the free 

surface. At a corner node we impose u =  0 since it lies on the zero shear stress planar 

‘free surface’ .

Type (ii) Singularity

A type (ii) singularity is formed at the junction of a moving and a stationary wall. An 

example is illustrated in Figure B.3. The moving (velocity U) and stationary lids are 

positioned at 0 =  0, 7r/2 respectively. The first order solution to the boundary value 

problem shown in Figure B.3 is

Ur
=  -̂ 2  ^  sin 0 -  4# cos 0 -  2x0 sin 9)

with
U

= (¿2_ '4 )r (47rcos0 ~ 8sin0)

Hence the appropriate boundary conditions on vorticity for the lids are

(a) Moving Lid (6 =  0)

U>! =

(b) Stationary Lid (9 =  x /2 )

(B.29)

(B.30)

4xt7

w

(x 2 — 4)r 

8 U

(B.31)

(B.32)(x 2 — 4)r

In the F.E. solutions of flows with a type (ii) singularity, the magnitude o f the vorticity 

at the node closest to, but not at the corner of (a) the moving lid, (b) the stationary 

lid is given by the magnitudes of (B.31) and (B.32) respectively. The actual sign o f the 

vorticity depends on the relative orientation of the moving and stationary lids. At the 

corner, r =  0 so it is not possible to use the above conditions on vorticity. In §§1.3.2 

we saw that in most theoretical analyses o f dynamic wetting lines the singularity is
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removed by allowing perfect slip at the wetting line; this condition may be reinterpreted 

as requiring zero shear stress at the wetting line. This device is also used here to remove 

a type (ii) singularity, i.e. we impose w = 0 at the corner.

B.5 Local Co-ordinates: The Isoparametric Mapping

The computation of the F.E. equations (B.20), (B.21) would seem to present an onerous 

task because for elements of general size and orientation the shape functions Nk become 

very complicated functions of the cartesian co-ordinates. The purpose of this section is 

to describe how this problem can be alleviated by isoparametrically mapping a standard 

element, defined in local co-ordinate space, into each of the deformed elements in the 

flow domain. The precise definition o f the shape functions depends on the shape of the 

element being used and the local node numbering scheme adopted (see Carter [1985] 

pp 199-200). Since 6-node triangular elements are used in this thesis, we will limit this 

section to the details for this type of element.

Figure B .l shows the standard triangular element in local co-ordinate (£,»?) space, 

henceforth known as Ao, and the local node numbering scheme used in this application. 

Carter [1985] has shown that the shape functions Nk may be conveniently expressed 

in terms of local ‘area’ co-ordinates L\, L2, X3. Referring to Figure B.4, let the 

whole element have area A whilst each of the smaller, separate triangles have areas 

A i, A2, A3. The ‘area’ co-ordinates X j, X2, X3 are defined as

Lx =  , X2 = ^  , X3 = ^  (B.33)

and are not independent variables since

L\ +  X2 +  X3 =  1 (B.34)

Carter [1985] showed that in the local triangle Ao

Lx =  ¿ (1  + 2 0  , L2 =  ^(1 -  i  +  v/3q) , X3 =  ^(1 "  £ -  ^3*?) (B.35)

and if Nk denotes the shape function associated with local node k, under the local node 

numbering scheme of Figure B .l, then

Nx — L i(2L\ — 1) , N2 =  4LxL2 (B.36)
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N3 = L2(2L2 - 1 )  , N4 =  4£ 2£ 3 (B.37)

N$ =  £ 3(2X3 — 1) , N$ — 4X1 X3 (B.38)

It can be seen that these shape functions not only satisfy requirement (B.4), but also 

yield
6

”  "  "  (B.39)E  "■ *«.u = 1
fc=i

at any point o f the element.

In §B.2 we saw that if (tpk,u k) denote the values o f the streamfunction and vorticity

at the kth local node, the value of V’ and u  at any point inside the element is given

by (B.3). If xk =  (xk,yk) are the global co-ordinates o f the kth local node, then an

element is said to be isoparametric if any point in the interior o f the element is given

by (Kistler and Scriven [1983], Carter [1985])
6

x = xkNk((,r )) (B.40)
Jt=i

i.e. the expressions for x and y involve the same shape functions as the dependent 

variables. This isoparametric relation is o f crucial importance because it enables the 

equations in global (x, y) space to be evaluated in local ( { ,  77) space via the relation

f  f(x,y)dxdy  =  f  f(x(Z,ri),y(Z,T]))\J\ didr, (B.41)
J element J Ao

where \J\ is the determinant of the Jacobian of the transformation, J ', defined by

J  =
Q { x , y ) dx/d£ dx/dp 

dy/di dy/dr,
(B.42)

Note that dx/di, dx/dr,, dy/di, dy/dr, follow directly from the isoparametric map

ping (B.40), namely
a -  6 . i)N,. At JL  . ANY

(B.43)dx r-^
=  £  2- "a T  ’ 7^  =  2̂dl &  ~ di  ’ dr, £  ~ dr,

Now in the F.E. equations we need to evaluate dNk/dx and dNk/dy. These may be 

obtained in terms of derivatives with respect to the local (£ ,7?) co-ordinates via the

relation (see Kistler and Scriven [1983] p 274)

8Nk 1 /  dy dNk dydNk\
~d7 '  \J\ Ur? di di dr, J (B-44)
dNk 1 /  dx dNk

m V  rdy \J\ \ Or, di
dx dNk \ 

+  di dr, ) (B.45)
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To complete the F.E. equations it is necessary to evaluate the line integral

L NiV> ia

where d fl1 is the portion of the boundary formed by solid walls and Vt is the velocity 

of the wall. This is trivial for all nodes which do not lie on dil1 because (B.46) will 

equal zero.

However, when node j  lies on d ii1 this integral is more conveniently evaluated in 

local rather than global (x, y) space by using the isoparametric mapping. In practice, 

(B.46) is calculated by adding all the contributions along element sides which lie along 

dft1. Without loss o f generality suppose that node j lies on d fi1 and on the side of an 

element containing local nodes 1, 5 and 6, see Figure B.5. Along the solid boundary,

L2 = N2 = N3 = N4 =  0 (B.47)

hence from equation (B.34) L\ and X3, which are non-zero along this side, satisfy

L\ +  X3 =  1  (B.48)

This means that the biquadratic shape functions jV,- collapse to quadratic functions of a 

single area co-ordinate. Since the direction of integration in (B.46) is anticlockwise, it is 

convenient to choose to parametrise the shape functions along this side solely in terms 

o f L\ because it increases along the element boundary in the direction of integration,

i.e. dsjdL\ >  0.

Along this element side it is easily shown that 

Ni =  L\{2Li — 1) , N6 =  4 l i ( l - X i )  , N$ =  l - Z L x +  2L\ (B.49)

Moreover, if  (* i ,y i) ,  (x6,y6), (^ V s )  are the co-ordinates of local nodes 1, 6 and 5 

respectively then the isoparametric mapping (B.40) yields

x =  xiATi(Ii) +  *6^6(Xi) +  xs-NsfXi) (B.50)

y =  y\N\(L\) +  y6Ne(Li) +  ysNs(Li) (B.51)

and in particular

h L  =  (4Xi — 1)^1 +  (4 — 8X1 )x6 +  (4Xi - 3 ) x5 (B.52)
dL\

J L  =  (4X1 -  l)y\ +  (4 -8 X 0 2 ,6  +  (4Xi — 3 )2,5 (B.53)
dL\
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This enables the integration along the element side to be completed since

rLi dsr r î =1 rf«
VtNjda =  /  VtNj— d h

J  tide  J  L \~  0 d l j \
(B.54)

where ds/dL\ =  y/((dx/dLi)2 +  (dyfdL\)2) can be calculated from (B.52), (B.53). 

Therefore the actual value o f  (B.46), which is calculated by adding up all the contri

butions along element sides which lie along ÔÎÎ1, is

f  NjVtds = £  {  f Ll 'v tN j— d l À  
h m . t i .  l ^ t - o  3dLx J

(B.55)

B.6 Numerical Integration

In order to evaluate the F.E. equations we need to evaluate element-level contributions 

of the form

[  f (x , y )dxdy  , I g{s) ds (B.56)
J element J tide '

In the previous section we saw how these integrals can be evaluated in local co-ordinate 

space since

f  f (x ,y)dxdy = [  / ( { ,  tj) \J\ d^dr) (B.57)
J element J Ao

where \J\ is the determinant of the Jacobian of the isoparametric mapping and

L / s ) *  =  I  s(L i)dL,iL ' ( B-58>

where X,- is an area co-ordinate. In F.E. methods it is usual to perform this integra

tion numerically using Gaussian quadrature. For area integrals, this method involves

approximating (B.57) by
n

I  F(Ç,v)dÇdi] = F (t "  Vi)u>, 
JAo 1=1

(B.59)

where F ( ^ tj) =  /(£ ,* /) \J\, (6,*7.) are n specified points (called Gauss points), and tn, 

are n specified constants (called the weights). For boundary integrals, replace (B.58)

ty  l
f l G(t )d£ =  £  G(ti)wi (B.60)

•'° i=i
where G(£) =  g({)  dsJdU and fc, to* (t =  l,...n ) are the Gauss points and weights 

respectively for this one-dimensional integral. Most text books on F.E. methods contain
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tables of these values. The Gaussian quadrature formulae are derived by approximating 

the integrand by a polynomial; the order of the integrand for which the scheme is exact 

increases with the number of Gauss points. However they are not unique, even for a 

particular order of accuracy.

In practice before one can have any confidence in the F.E. results obtained using 

a particular quadrature scheme, they must be compared with results obtained using 

different schemes and, if possible, results from an analytical solution of the problem. 

The quadrature schemes for area and boundary intergals used in this thesis are shown 

in Figures B.6 and B.7 respectively. Note that the area integral schemes refer to the 

integration over the standard triangular element Ao, defined in local (£, r?) co-ordinate 

space (see Figure B .l). Scheme A is obtained from the NAg F.E. library whereas 

schemes B, C and D are modified versions of those given by Zienkiewicz [1977 p 201], 

All the boundary integral schemes, however, are for integrals over the interval [0,1]; 

they are modified forms of schemes given by Zienkiewicz [1977 p 198] for integration 

over the interval [-1,1].

B.7 Solution of the F.E. Equations

The F.E. equations (B.20), (B.21) are solved using a ‘banded-matrix’ solver from the 

NAg F.E. library of subroutines; the banded-matrix solution method is described in 

Appendix C. The bandwidth of these equations is minimised by a judicious node num

bering scheme developed by Gaskell and Mobbs [1985]. This successfully reduced the 

bandwidth of the equations to a manageable size.
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G l o b a l  S p a c e  L o c a l  S p a c e  A  0

Figure B .l: Six Node Triangular Elements with Local Node Numbering Scheme and 

Local Co-ordinate Space Aq

& =  tt/2

Figure B.2: A Type (i) Singularity -  Dynamic Wetting Line
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6 =  tt/2

Figure B.3: A Type (ii) Singularity

3

5

=  A i  L 2 = A 2  L 3 =  

A  A

where
1

A = A  j f  A  A  2

Figure B.4: Subtriangles of a Triangular Element -  ‘Area Co-ordinates’

>i
>
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Direction of Integration

Figure B.5: Local Node Numbering Scheme Along a Solid Boundary
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Scheme (A) - 4 quadrature points (all positive weights)

L\ L3 l 3 w
a 1 0 0 n/3/16
b 0 1 0 n/3/16
c 0 0 1 n/3/16
d 1/3 1/3 1/3 9\/3/16

Scheme (B) - 3 quadrature points (all positive weights)

L\ Z-2 ¿3 w
a 1/2 1/2 0 n/3 /4
b 0 1/2 1/2 v/3/4
c 1/2 0 1/2 n/3 /4

Scheme (C) - 7 quadrature points (all positive weights)

L\ L2 l 3
a 1/3 1/3 1/3 tnj
b «1 A 01
c Pi «1 01 Î//2
d 0i 0i Qi W2
e OL2 02 02 W3
f 02 OC2 02 W3
g 02 02 a2 W3

where
Û1 = 0.05971587
Q2 = 0.79742699
Pi = 0.47014206
02 = 0.10128651

and
uq = 0.29228357
U>2 = 0.17198505
W3 - 0.1635998

Scheme (D) - 4 quadrature points (one negative weight)

A A A w
a 1/3 1/3 1/3 -W i
b 11/15 2/15 2/15 V)2
c 2/15 11/15 2/15 XÜ2
d 2/15 2/15 11/15 XV2

where uq =  0.73070893 and = 0.67658235

b

Figure B.6: Gaussian Quadrature Schemes For Area Integrals
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Scheme (a) - 2 quadrature points

£ w
a 0.21132487 1/2
b 0.78867513 1/2

Scheme (b) - 3 quadrature points

£ w
a 0.11270167 5/18
b 0.5 4/9
c 0.88729833 5/18

Scheme (c) - 4 quadrature points

£ w
a 0.06943184 W\
b 0.33000948 W2
c 0.66999052 W2
d 0.93056816 W\

a  b
•— x -------------------------- x — •
0  1

a
•—x-
0

b  c
x -------------- x - «

1

a

0

b e d
x -----------x -----------x -«

1

where w\ =  0.17392742 and 1V2 — 0.32607258

Figure B.7: Gaussian Quadrature Schemes For Boundary Integrals
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C .l - Introduction

C.2 - The Banded-Matrix Solution Method 

C.3 - The Frontal Solution Method

C.3.1 - The Philosophy of the Frontal Method 

C.3.2 - The Front 

Figures C .l - C.4
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F.E. Storage Algorithms

C .l Introduction

It is desirable to have an efficient storage method for large global matrices, coupled of 

course with an efficient algebraic solver. Two techniques have been used in this thesis, 

the pertinent features of which are outlined below.

C.2 The Banded-Matrix Solution Method

Since any global matrix produced by the F.E. method always has a non-zero banded 

structure, it has become a common practice to store only those terms falling within this 

band. For a symmetric matrix the stored array will have a size equal to the total number 

of variables multiplied by the half-bandwidth of the matrix, while for a non-symmetric 

matrix the stored array size will be the product of the total number of variables and 

the band-width. Both are illustrated schematically - see Figure C .l (a) and (b) for a 

system with 8 unknowns.

Clearly, the smaller the bandwidth, the more efficient the storage. The bandwidth 

relies heavily on the global node numbering procedure adopted. In order to achieve the 

minimum bandwidth, the difference between the biggest and smallest node number, for 

any element, must be kept as small as possible.

As regards the solver, Gaussian Elimination is used, modified in accordance with 

the band storage (see e.g. Bohte [1975], Hager [1988]). The present work employs a

261
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subroutine from the NAg F.E. library which incorporates pivoting via row interchange.

C.3 The Frontal Solution Method

The banded-matrix technique used in the solution o f ‘ cavity-driven’ flows is ineffective 

for problems such as roll coating because every element moves with the free surface, 

thereby destroying the banded structure of the global matrix. Another method exists 

which is ideally suited to the solution of F.E. problems: the ‘Frontal Solution Method’. 

This technique is also based on Gaussian Elimination but is more efficient in terms of 

storage space than the banded-matrix method.

In 1970, Irons published a ‘Frontal Solution Program’ for use in finite element 

analysis. However, it was restricted to use with symmetric matrices and it was not 

until 1976 with a paper by Hood that it was adapted to solve problems producing 

matrices which are not symmetric. It is the formulation due to Hood which is followed 

here.

C .3 .1  T h e  P h ilo so p h y  o f  th e  F ron ta l M e th o d

This can briefly be summarized as follows. We commence by assembling each of the 

element stiffness matrices in turn (i.e. element 1, element 2, etc) until the storage 

area allocated to the solution routine is full. Then with the assembled part of the 

complete matrix, a pivotal search is made to determine the largest entry from those rows 

and columns to which there will be no further contribution from subsequent element 

assembly. Gauss elimination is then used (with the pivotal row) to eliminate all the 

coefficients in the pivotal column. The pivotal row is then stored in an external file. The 

elimination process is repeated until sufficient storage is available to assemble further 

stiffness matrices. Finally, when all the elements have been assembled, the solution is 

obtained via a back substitution process. This is best illustrated by considering the 

simple 3-element problem shown in Figure C.2.

After assembling the equations for element 1 say, we have the following local stiffness
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matrix.
/  „1“ 11 “ 12 l 13

a21 a 22 °23

\

x2 = b\

/  ̂ 63 y

(C .l)

where the superscript refers to the element number. At this stage it can be seen that 

there will be no more contributions to the equation for x\ and hence an may be used 

to eliminate x\ from all the equations so far assembled. Equation 1 is then stored in 

an external file. Note at this stage, equations 2 and 3 are not complete and may not 

be eliminated until further elements have been assembled. We are now left with the 

following matrix equation.

Within the program we actually retain the (3x3) matrix and move the remaining entries 

back one column and up one row as illustrated below.

/

\

& ) )

\ *3 / . b\ -  , \ 3 “ li /

(C.2)

( X  x  x  y f X  x  0 y
\  \

0 X  X —¥ X  X  0
\  \

\ 0  X  X  ) <° 0 0 /

Row 3 and column 3 are now free for the assembly of element 2.

Note It was seen earlier that node numbering was important to keep the bandwidth 

of the matrix as small as possible. This does not matter here since the equations are 

stored in the order in which they are formed. However, element numbering is important 

(see later).

We can now add the element stiffness matrix from element 2 to the global matrix. 

The only extra variable introduced is X4. Equation 4 is assembled in the now vacant 

line 3 and the coefficients of X4 in column 3. Hence using the same notation as above 

we obtain the element stiffness matrix for element 2 .

x22
„2 a2“ 23 “ 24

x32 a 33 a 34

(  \ 
*2 (V
X3 =

l̂ y



Appendix C: F.E. Storage Algorithms 264

The global matrix now becomes

/
(°2 2  — = 5 ^  +  4 . ) ( “ M  -  ^  +  » » ) a 24 N

(°3 2  ~ ( “ M -  ^  +  4 > ) a 34

V a 42 a 43 °44 >

Since assembly of element 3 contributes nothing to the equation for X2 we can eliminate 

12  ia t ie  same way as we eliminated x\. The solution process continues in this way 

until all the elements are assembled.

In practice it is possible to assemble many elements before being required to elimi

nate. Hence, when we come to eliminate we may have several fully assembled equations 

and may choose to use total pivoting. This is preferable to partial pivoting since there 

are a limited number of equations to pivot on. By choosing the largest pivot we will in

crease the stability of the solution process. Descriptions of the method of total pivoting 

can be found in most text books on numerical methods.

C.3.2 The Front

Consider the finite element mesh shown in Figure C.3. Let us suppose that elements 

1 to 7 have been assembled. The ‘active’ variables, i.e. the ones not yet fully summed 

are known collectively as the front. The minimum number of equations required to be 

assembled before elimination can proceed is known as the front width. In order to save 

storage we need to minimise the front width. In practice this is achieved by keeping 

the range of element numbers surrounding any node as small as possible. The Frontal 

Solution Process is summarized in Figure C.4.



Appendix C: F.E. Storage Algorithms 265

(a)

¡<\  l  ¡< 1 2  ¡ < '.2
A ' i i J\ A ' U

A '^ -  A ' - 3 A * n 4
A * 2 3 / ^ 2 3 a * : 4

'<  3 3 A *34 A ' . l i
i ' 3 3 « ■ 3 4 A '3 S

* '4  4 A ' i,*>
S 7 0 T > £

A ' « f ' n * < U .

-V 5 5 A 'b ó A V
— A ' m A '. r t

A ‘ ‘ » 6 * M 7
I ' C C ¡< ’¡7 -V . ;3

Tv 7  7 A ' r .4
t\ 7  7

A ' $ 8  .
A 's g

.

(b )

A 'u ¡<12 A 'l i A n x l= A '13

A'2 1 ¡<22 A '23 A ; 4 * 2 1 7C*t j A  24

K '3 l ¡<22 A'3 3 * 3 4 A'3S * 3 1 A%n * 3 3 A *., A 'as

A ',  2 A*4 3 * 4  4 A 'as A ', 6
5 7 0 7 2 .E

a% : * 4 3 * 4 4 * 4 3 * 4 6

A 's 3 * S 4 A 'ss A s e * 5 7 * 6 3 * 5 4 * 5 5 * 5 5 * 6 7

A's< A'«S *■ <¡6 J M 7 * 8 8 A'î 4 * 8 5 A'gg * 5 7 A*c?

A'7S * 7 8 ¡<77 * 7 g * : s A '7g ¡<77 * 7 S

A 'gs * 5 7 * « 8  _ .  * * « * 8 ? * 8 8 .

Figure C .l: Banded-Matrix Storage Method For (a) Symmetric, (b) Non-Symmetric 

Matrices

2 4

1 3 5

Figure C.2: A Simple 3-element problem
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- © — Q

; 9
-43— O  

2 I 5 8
• — - # — © — €3 

1 4 7

#  E l i m i n a t e d  V a r i a b l e s  

©  A c t i v e  V a r i a b l e s

O  V a r i a b l e s  y e t  t o  b e  

a s s e m b l e d

Figure C.3: A Simple F.E. Mesh

Let,
(i) NE= total number of elements
(ii) NELL= number of elements assembled
(iii) KROW= number of rows already assembled
(iv) NCRTT= the maximum number of rows to be 
assembled before storage space is full

Figure C.4: A Flow Chart of the Frontal Solution Process
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