1,527 research outputs found

    Variation in surgical demand and time to hip fracture repair: a Canadian database study.

    Get PDF
    BACKGROUND: Competing demands for operative resources may affect time to hip fracture surgery. We sought to determine the time to hip fracture surgery by variation in demand in Canadian hospitals. METHODS: We obtained discharge abstracts of 151,952 patients aged 65 years or older who underwent surgery for a hip fracture between January, 2004 and December, 2012 in nine Canadian provinces. We compared median time to surgery (in days) when demand could be met within a two-day benchmark and when demand required more days, i.e. clearance time, to provide surgery, overall and stratified by presence of medical reasons for delay. RESULTS: For persons admitted when demand corresponded to a 2-day clearance time, 68% of patients underwent surgery within the 2-day benchmark. When demand corresponded to a clearance time of one week, 51% of patients underwent surgery within 2 days. Compared to demand that could be served within the two-day benchmark, adjusted median time to surgery was 5.1% (95% confidence interval [CI] 4.1-6.1), 12.2% (95% CI 10.3-14.2), and 22.0% (95% CI 17.7-26.2) longer, when demand required 4, 6, and 7 or more days to clear the backlog, respectively. After adjustment, delays in median time to surgery were similar for those with and without medical reasons for delay. CONCLUSION: Increases in demand for operative resources were associated with dose-response increases in the time needed for half of hip fracture patients to undergo surgery. Such delays may be mitigated through better anticipation of day-to-day supply and demand and increased response capability

    Preem CCS - Synthesis of main project findings and insights

    Get PDF
    The Preem-CCS project was a Swedish-Norwegian collaboration that investigated CO2 capture from the Preem refineries in Sweden, and subsequent ship transport of captured CO2 for permanent storage on the Norwegian Continental Shelf. The project was conducted from early 2019 to beginning of 2022 and funding was provided by the Norwegian CLIMIT-Demo program via Gassnova, by the Swedish Energy Agency and by the participating industry and research partners (Preem, Aker Carbon Capture, SINTEF Energy Research, Chalmers University of Technology, and Equinor).This report summarizes the key findings of the project activities listed below:\ua0 -\ua0Pilot-scale testing of CO2 capture at the hydrogen production unit (HPU) at the Lysekil refinery using the Aker Carbon Capture (ACC) mobile test unit (MTU)\ua0 -\ua0In-depth investigation of energy efficiency opportunities along the CCS chain, including the use of residual heat at the Lysekil refinery site to satisfy the energy requirements for solvent regeneration\ua0 -\ua0Evaluation of the technical feasibility and cost evaluation of the CCS chain including CO2 capture and transportation by ship to storage facilities off the Norwegian west coast\ua0 -\ua0Investigation of relevant legal and regulatory aspects related to trans-border CO2 transport and storage and national emissions reduction commitments in Norway and SwedenThe report also discusses the next steps towards implementation of CCS at Preem refineries in Lysekil and Gothenburg

    An epigenetic clock for human skeletal muscle.

    Get PDF
    BACKGROUND: Ageing is associated with DNA methylation changes in all human tissues, and epigenetic markers can estimate chronological age based on DNA methylation patterns across tissues. However, the construction of the original pan-tissue epigenetic clock did not include skeletal muscle samples and hence exhibited a strong deviation between DNA methylation and chronological age in this tissue. METHODS: To address this, we developed a more accurate, muscle-specific epigenetic clock based on the genome-wide DNA methylation data of 682 skeletal muscle samples from 12 independent datasets (18-89 years old, 22% women, 99% Caucasian), all generated with Illumina HumanMethylation (HM) arrays (HM27, HM450, or HMEPIC). We also took advantage of the large number of samples to conduct an epigenome-wide association study of age-associated DNA methylation patterns in skeletal muscle. RESULTS: The newly developed clock uses 200 cytosine-phosphate-guanine dinucleotides to estimate chronological age in skeletal muscle, 16 of which are in common with the 353 cytosine-phosphate-guanine dinucleotides of the pan-tissue clock. The muscle clock outperformed the pan-tissue clock, with a median error of only 4.6 years across datasets (vs. 13.1 years for the pan-tissue clock, P < 0.0001) and an average correlation of ρ = 0.62 between actual and predicted age across datasets (vs. ρ = 0.51 for the pan-tissue clock). Lastly, we identified 180 differentially methylated regions with age in skeletal muscle at a false discovery rate < 0.005. However, gene set enrichment analysis did not reveal any enrichment for gene ontologies. CONCLUSIONS: We have developed a muscle-specific epigenetic clock that predicts age with better accuracy than the pan-tissue clock. We implemented the muscle clock in an r package called Muscle Epigenetic Age Test available on Bioconductor to estimate epigenetic age in skeletal muscle samples. This clock may prove valuable in assessing the impact of environmental factors, such as exercise and diet, on muscle-specific biological ageing processes

    A hysteretic multiscale formulation for nonlinear dynamic analysis of composite materials

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.A new multiscale finite element formulation is presented for nonlinear dynamic analysis of heterogeneous structures. The proposed multiscale approach utilizes the hysteretic finite element method to model the microstructure. Using the proposed computational scheme, the micro-basis functions, that are used to map the microdisplacement components to the coarse mesh, are only evaluated once and remain constant throughout the analysis procedure. This is accomplished by treating inelasticity at the micro-elemental level through properly defined hysteretic evolution equations. Two types of imposed boundary conditions are considered for the derivation of the multiscale basis functions, namely the linear and periodic boundary conditions. The validity of the proposed formulation as well as its computational efficiency are verified through illustrative numerical experiments

    A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF(-/-), or p53(-/-)), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value

    Getting “Just Deserts” or Seeing the “Silver Lining”: The Relation between Judgments of Immanent and Ultimate Justice

    Get PDF
    People can perceive misfortunes as caused by previous bad deeds (immanent justice reasoning) or resulting in ultimate compensation (ultimate justice reasoning). Across two studies, we investigated the relation between these types of justice reasoning and identified the processes (perceptions of deservingness) that underlie them for both others (Study 1) and the self (Study 2). Study 1 demonstrated that observers engaged in more ultimate (vs. immanent) justice reasoning for a "good" victim and greater immanent (vs. ultimate) justice reasoning for a "bad" victim. In Study 2, participants' construals of their bad breaks varied as a function of their self-worth, with greater ultimate (immanent) justice reasoning for participants with higher (lower) self-esteem. Across both studies, perceived deservingness of bad breaks or perceived deservingness of ultimate compensation mediated immanent and ultimate justice reasoning respectively. © 2014 Harvey and Callan

    Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task

    Get PDF
    Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function

    What we talk about when we talk about "global mindset": managerial cognition in multinational corporations

    Get PDF
    Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research
    corecore