63 research outputs found

    Surface representation impacts on turbulent heat fluxes in the Weather Research and Forecasting (WRF) model (v.4.1.3)

    Get PDF
    The water and energy transfers at the interface between the Earth's surface and the atmosphere should be correctly simulated in numerical weather and climate models. This implies the need for a realistic and accurate representation of land cover (LC), including appropriate parameters for each vegetation type. In some cases, the lack of information and crude representation of the surface lead to errors in the simulation of soil and atmospheric variables. This work investigates the ability of the Weather Research and Forecasting (WRF) model to simulate surface heat fluxes in a heterogeneous area of southern France using several possibilities for the surface representation. In the control experiments, we used the default LC database in WRF, which differed significantly from the actual LC. In addition, sub-grid variability was not taken into account since the model uses, by default, only the surface information from the dominant LC category in each pixel (dominant approach). To improve this surface simplification, we designed three new interconnected numerical experiments with three widely used land surface models (LSMs) in WRF. The first one consisted of using a more realistic and higher-resolution LC dataset over the area of analysis. The second experiment aimed at investigating the effect of using a mosaic approach; 30 m sub-grid surface information was used to calculate the final grid fluxes based on weighted averages from values obtained for each LC category. Finally, in the third experiment, we increased the model stomatal conductance for conifer forests due to the large flux errors associated with this vegetation type in some LSMs. The simulations were evaluated with gridded area-averaged fluxes calculated from five tower measurements obtained during the Boundary-Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. The results from the experiments differed depending on the LSM and displayed a high dependency of the simulated fluxes on the specific LC definition within the grid cell, an effect that was enhanced with the dominant approach. The simulation of the fluxes improved using the more realistic LC dataset except for the LSMs that included extreme surface parameters for coniferous forest. The mosaic approach produced fluxes more similar to reality and served to particularly improve the latent heat flux simulation of each grid cell. Therefore, our findings stress the need to include an accurate surface representation in the model, including soil and vegetation sub-grid information with updated surface parameters for some vegetation types, as well as seasonal and man-made changes. This will improve the modelled heat fluxes and ultimately yield more realistic atmospheric processes in the model

    The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

    Get PDF
    Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations

    Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer

    Get PDF
    Observations, mixed-layer theory and the Dutch Large-Eddy Simulation model (DALES) are used to analyze the dynamics of the boundary layer during an intensive operational period (1 July 2011) of the Boundary Layer Late Afternoon and Sunset Turbulence campaign. Continuous measurements made by remote sensing and in situ instruments in combination with radio soundings, and measurements done by remotely piloted aircraft systems and two manned aircrafts probed the vertical structure and the temporal evolution of the boundary layer during the campaign. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the models runs are inspired by some of these observations. The research focuses on the role played by the residual layer during the morning transition and by the large-scale subsidence on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night in the development of the boundary layer at the morning. DALES numerical experiments including the residual layer are capable of modeling the observed sudden increase of the boundary-layer depth during the morning transition and the subsequent evolution of the boundary layer. These simulations show a large increase of the entrainment buoyancy flux when the residual layer is incorporated into the mixed layer. We also examine how the inclusion of the residual layer above a shallow convective boundary layer modifies the turbulent kinetic energy budget. Large-scale subsidence mainly acts when the boundary layer is fully developed, and, for the studied day, it is necessary to be considered to reproduce the afternoon observations. Finally, we also investigate how carbon dioxide (CO2) mixing ratio stored the previous night in the residual layer plays a fundamental role in the evolution of the CO2 mixing ratio during the following day

    Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings

    Get PDF
    We study the influence of the large-scale atmospheric contribution to the dynamics of the convective boundary layer (CBL) in a situation observed during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. We employ two modeling approaches, the mixed-layer theory and large-eddy simulation (LES), with a complete data set of surface and upper-air atmospheric observations, to quantify the contributions of the advection of heat and moisture, and subsidence. We find that by only taking surface and entrainment fluxes into account, the boundary-layer height is overestimated by 70 %. Constrained by surface and upper-air observations, we infer the large-scale vertical motions and horizontal advection of heat and moisture. Our findings show that subsidence has a clear diurnal pattern. Supported by the presence of a nearby mountain range, this pattern suggests that not only synoptic scales exert their influence on the boundary layer, but also mesoscale circulations. LES results show a satisfactory correspondence of the vertical structure of turbulent variables with observations. We also find that when large-scale advection and subsidence are included in the simulation, the values for turbulent kinetic energy are lower than without these large-scale forcings. We conclude that the prototypical CBL is a valid representation of the boundary-layer dynamics near regions characterized by complex topography and small-scale surface heterogeneity, provided that surface- and large-scale forcings are representative for the local boundary layer

    Writing Russia's future: paradigms, drivers, and scenarios

    Get PDF
    The development of prediction and forecasting in the social sciences over the past century and more is closely linked with developments in Russia. The Soviet collapse undermined confidence in predictive capabilities, and scenario planning emerged as the dominant future-oriented methodology in area studies, including the study of Russia. Scenarists anticipate multiple futures rather than predicting one. The approach is too rarely critiqued. Building on an account of Russia-related forecasting in the twentieth century, analysis of two decades of scenarios reveals uniform accounts which downplay the insights of experts and of social science theory alike
    • …
    corecore