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Abstract. We study the influence of the large-scale at-

mospheric contribution to the dynamics of the convective

boundary layer (CBL) in a situation observed during the

Boundary Layer Late Afternoon and Sunset Turbulence

(BLLAST) field campaign. We employ two modeling ap-

proaches, the mixed-layer theory and large-eddy simulation

(LES), with a complete data set of surface and upper-air at-

mospheric observations, to quantify the contributions of the

advection of heat and moisture, and subsidence. We find

that by only taking surface and entrainment fluxes into ac-

count, the boundary-layer height is overestimated by 70 %.

Constrained by surface and upper-air observations, we infer

the large-scale vertical motions and horizontal advection of

heat and moisture. Our findings show that subsidence has a

clear diurnal pattern. Supported by the presence of a nearby

mountain range, this pattern suggests that not only synoptic

scales exert their influence on the boundary layer, but also

mesoscale circulations. LES results show a satisfactory cor-

respondence of the vertical structure of turbulent variables

with observations. We also find that when large-scale ad-

vection and subsidence are included in the simulation, the

values for turbulent kinetic energy are lower than without

these large-scale forcings. We conclude that the prototypical

CBL is a valid representation of the boundary-layer dynam-

ics near regions characterized by complex topography and

small-scale surface heterogeneity, provided that surface- and

large-scale forcings are representative for the local boundary

layer.

1 Introduction

The daytime convective boundary layer is essentially gov-

erned by heating at the surface and the conditions of the free

troposphere. The surface heating causes warm air to rise to

the top of the boundary layer in the form of coherent tur-

bulent structures and to entrain air from aloft. As a conse-

quence, the convective boundary layer (CBL) grows and be-

comes warmer and drier (Stull, 2000). Without the presence

of clouds, the surface heating is driven by the diurnal solar

cycle and it is the dominant contribution to the CBL dynam-

ics. This CBL development can be influenced by the vertical

and horizontal advection of heat, momentum and moisture

within and above the CBL. In the late afternoon, when the

incoming short wave radiation begins to decrease, the growth

of the boundary layer slows down and the convective bound-

ary layer reaches a quasi-steady state, due to the offsetting ef-

fects of surface fluxes and subsidence, with the greatest depth
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at the end of the afternoon. This conceptualization of the

boundary-layer structure and evolution is referred to herein

as the prototypical boundary layer.

To study this canonical CBL, one assumes that the main

drivers are the turbulent fluxes at the surface and at the

entrainment zone, whereas the large scale forcing are pre-

scribed as done by Lilly (1968) in his pioneer study of ma-

rine stratocumulus. This local CBL can be influenced by

these large scale motions such as subsidence and advection as

shown in Fig. 1, in which the local boundary layer is marked

by the dashed box. Consequently, to take these motions in

modeling the CBL into account, we need to have a reliable

estimation of the values and evolution of these large-scale

forcings. Over land, several studies have been conducted in-

cluding large scale forcings, influencing the development of

the boundary layer dynamics (for example, Basu et al., 2008;

Kumar et al., 2010; Edwards et al., 2014). Closely connected

to our study, due to the similarities of steep topography fea-

tures near the observational site, in a study of boundary layer

development, De Wekker (2008) showed that the heat bud-

get is modified near a mountain slope, not only within the

CBL, but also aloft. As a result, CBL growth is suppressed.

The role of subsidence has been investigated more often in

marine boundary layers, in which it exerts a strong influence

on the formation and dissipation of boundary-layer clouds

(Lilly, 1968; Stevens et al., 2005).

Large-scale forcing, values and evolution, are normally

supplied by three-dimensional large-scale models like the

European Centre for Medium-range Forecasting (ECMWF)

model, or indirectly by the analysis of upper air observa-

tions (e.g. radiosounding) like the temporal evolution of the

potential temperature free tropospheric lapse rate. Here, we

propose a method to retrieve the values of large scale mo-

tions that influence the formation and development of the lo-

cal boundary layer in the proximity of the large mountain

range of the Pyrenees. Our method is based on using mixed-

layer theory applied to the budgets of heat and moisture

(Lilly, 1968; Tennekes and Driedonks, 1981) constrained

with a comprehensive data set gathered during the Bound-

ary Layer Late Afternoon and Sunset Turbulence (BLLAST)

experiment (Lothon et al., 2014). Our working hypothesis is

that large scale forcings can be inferred by combining these

mixed-layer model results guided by the completeness of sur-

face and upper-air boundary layer observations gathered dur-

ing BLLAST field campaign. The main advantage of this

method is that it is inherently representative for the local

boundary layer and does not require a complex modeling ef-

fort using three-dimensional models. To complete the study,

we further investigate whether the turbulent characteristics of

this prototypical CBL are influenced by the large-scale forc-

ings. This latter study is based on large-eddy simulation ex-

periments using identical surface boundary conditions and

early-morning initial conditions as in the mixed-layer exper-

iments.

This paper will first introduce the BLLAST experiment

and provide a brief overview of the observations in Sect. 3,

including a detailed analysis of the study case, from synoptic

to local spatial scales. Special attention is given to the selec-

tion criteria for the case and the large scale conditions during

this day. Section 4 describes the set-up of the numerical ex-

periment and introduces the models that are used. In Sects. 5

and 6, the results of the numerical experiment are compared

to the observations with special attention on the evolution in

time and the vertical structure of the boundary layer and a

discussion on the estimations of the large scale forcing. Fi-

nally, conclusions are drawn, followed by recommendations

for future research.

2 The BLLAST experiment

The Boundary Layer Late Afternoon and Sunset Turbulence

(BLLAST) experiment (Lothon et al., 2014) seeks to study

the transition between the convective and stable boundary

layer, when a stable boundary layer (SBL) forms above the

surface and the turbulence inside the daytime boundary layer

slowly decays (Garratt and Brost, 1981; Sorbjan, 1997), leav-

ing a residual layer above the SBL. During this campaign

the surface conditions, the boundary-layer properties and the

lower atmosphere were extensively monitored in space and

time near Campistrous, France, approximately 40 km north

of the central range of the Pyrenees mountains. This site

was located on a plateau at a height of 600 m a.s.l. at the

foot of the Pyrenees mountain range with heights of approx-

imately 2000–2500 m. The BLLAST campaign provides us

with a continuous and comprehensive observational data set

of surface- and boundary-layer observations, supplemented

with data from 11 intensive observations periods (IOPs) that

took place during June and July 2011. During several IOPs

of this campaign, large scale motions were suspected to in-

fluence the boundary layer (Lothon et al., 2014). Whilst the

main focus was on measuring the boundary-layer properties,

attention was also paid to surface measurements, especially

because the campaign took place in an area characterized

by large surface heterogeneity. To characterize the synoptic

conditions, the entire troposphere was monitored extensively.

Together, all these observations create a high quality data set,

combining up to eight methods to estimate the boundary-

layer height. Using all surface data and boundary-layer ob-

servations, this data set gives a unique opportunity to carry

out a detailed study of the local atmospheric boundary layer

influenced by heterogeneous surface conditions and the prox-

imity of complex topography. Most of the instruments were

operating continuously, but there were several platforms that

operated intermittently. Among these were tethered balloons,

manned and unmanned aircraft and radiosoundings. The op-

eration of these platforms was limited to weather situations

characterized by weak synoptic patterns to better study the
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Figure 1. Sketch of the main process driving the development of

the atmospheric boundary layer observed on 25 June 2011 (IOP5).

The majority of the surface stations were located near the main site

(see Fig. 4), whereas the aircraft measurements were gathered in

an east–west direction during the case under study. Note that the

shear produced by the opposite wind direction is occurring above

the boundary layer (∼ 600 m) as shown at Fig. 3.

combined effects of CBL dynamics, mesoscale and synoptic

scales.

These periods of intensive observation (IOP) included the

clearest and least disturbed days of the campaign. However,

due to logistics and instrumental performance, not all plat-

forms operated simultaneously all the time. Therefore, there

were differences in instrumental availability between differ-

ent IOPs.

3 Observational description of the representative

boundary layer

First we set up criteria to select which IOP of BLLAST to

study. After that we describe the meso- and synoptic situa-

tion in detail and the evolution of the energy exchange at the

surface during this day. As an overview of the case analyzed

in this research, we summarize at Fig. 1 the main processes

that are quantified and discussed.

3.1 Case selection

Our aim is to investigate whether the prototype CBL (Stull,

2000) is a useful concept to be applied in regions charac-

terized by large surface heterogeneity and mesoscale phe-

nomena driven by topography. The analysis of the data is

supported by the use of a conceptual model that enables us

to quantify the individual contributions to the heat, mois-

ture and momentum budgets. More detailed numerical ex-

periments are made with a large-eddy simulation that allow

us to study the turbulent structure and its evolution.

From the 11 IOPs, we define a set of criteria to select the

most representative IOP period to study the deviations from

the CBL prototype due to the large-scale forcing. These cri-

teria are as follows.

1. The instrumental availability should be high.

2. The day should be free of clouds in order to obtain an

evolution of radiation and subsequent surface fluxes that

are more optimal for the assumptions of the conceptual

model.

3. Large scale forcings should be present, but these should

only lead to relatively minor variations during the day.

For instance, passing fronts will drastically change the

weather conditions and thus the growth of the CBL, and

are therefore excluded.

4. The vertical structure of heat and humidity should

evolve gradually. Layers which enhance or inhibit

boundary layer growth (e.g. inversions, shear zones or

a residual layer) would influence the strength of en-

trainment and as a result, the boundary-layer properties

(Stensrud, 1993; Conzemius and Fedorovich, 2008).

IOP5 satisfies the criteria stated above the best.

In the next sections, this day will be described in more

detail.

3.2 Case description: large scale forcings

Here we describe the main synoptic and mesoscale features

occurring during IOP5. Since it is difficult to distinguish the

specific contributions of the meso- and synoptic scales from

a local boundary-layer perspective, we group them under the

name large-scale forcings. In Fig. 2, the geopotential height

at 500 hPa and the pressure distribution at the surface, using

the European Centre Medium Weather Forecast (ECMWF)

reanalysis model, is shown for 25 June 2011 at 12:00 UTC.

The red dot shows the location of the BLLAST experiment.

During this day, a large system of high surface pressure is

located over central France and the Alps. The influence of

this high pressure system extends towards the south (Fig. 2b).

This results in clear skies and fair weather over the BLLAST

site with gentle easterly winds. Higher up in the atmosphere,

at 500 hPa, a strong ridge extends over the west of Europe

(Fig. 2a). This ridge causes a predominantly WNW flow in

the upper atmospheric regions above the BLLAST site.

Two soundings of the entire troposphere, taken at a cen-

tral location in the BLLAST experiment at 10:34 UTC (local

time=UTC + 2, with 1 h accounting for daylight saving)

and 16:44 UTC, confirm the two regimes with winds sharply

turning with height (Fig. 3). In general, the winds during

this day are weak in the lower troposphere, not exceeding

6 m s−1. Close to the surface, the wind is easterly, but at ap-

proximately 1500 m, there is a sharp turning of the wind to

WNW. This zone of directional shear remains present during

the day, but remains at a height of approximately 1500 m.

This is distinctly higher than the maximum boundary layer

height during this day, and therefore it can be expected to

exert no influence on the boundary-layer dynamics.

On the meso-scale, the proximity of the Pyrenees to the

south of the site often leads to a mountain–plain circulation

www.atmos-chem-phys.net/15/4241/2015/ Atmos. Chem. Phys., 15, 4241–4257, 2015
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Figure 2. Geopotential height (in decameter) of the 500 hPa level

(upper panel) and surface pressure field (hPa) (lower panel) from

the reanalysis of ECMWF at 12:00 UTC of the 25 June 2011. The

red dot represents the location of the BLLAST experiment.

(Lothon et al., 2014). The behavior of the boundary layer dur-

ing the day and the general conditions leads us to postulate

that large scale forcings such as subsidence and advection

should be taken into account to understand the behavior of

the boundary layer during the day (see Fig. 1).

25 June 2011 was the second of three consecutive IOPs

with fair weather and increasingly warmer temperatures. On

this day, the 2 m-temperature rose as high as 28 ◦C in the

afternoon at the BLLAST site. In the plains to the north of

the BLLAST site, temperatures exceeded 30 ◦C.

3.3 Case description: surface conditions

In addition to the nearby complex topography, the BLLAST

experiment took place in an area characterized by surface

heterogeneity. Figure 4 shows the land-use and the location

of the surface flux stations in the vicinity of the main sites.

The heterogeneity is characterized by different length scales

ranging from 500 to 1000 m. In Fig. 4, the categories rep-

resent aggregate land-use types. Especially within the crop-

land category there is still a large variety. In the BLLAST

campaign, turbulent measurements were made above a num-

ber of different land-uses, including wheat, grass, maize and

natural moor-like vegetation. From this, fluxes are calculated

with a uniform processing method (De Coster and Pietersen,

2011).

In Fig. 5a and b the radiation budget and surface energy

balance of a grass covered site during BLLAST IOP5 is

shown (site 2 in Fig. 4). The four components of the radiation

show a smooth diurnal cycle with absence of clouds. The av-

eraged Bowen ratio during the day is around 0.3. In conjunc-

tion with the initial profiles (not shown), these surface forc-

ings should lead to boundary-layer heights of ' 1100 m dur-

ing the afternoon. However, the boundary layer only reached

a height of ' 600 m during this day. This behavior suggests

that the development of the boundary layer was influenced

by processes besides surface heating and entrainment. To be

able to investigate the transition period where weak forc-

ings interact, the development of the daytime boundary layer

should be understood first.

The BLLAST campaign took place in a topographically

diverse landscape. Although the main site is on a plateau, the

height differences in the area are large. Several valleys with

a depth of 100–200 m radiate outward to the north of the site.

To the south, the foothills of the Pyrenees start and height

differences increase. The highest peaks of the Pyrenees, at a

distance of 45 km, reach heights of more than 3000 m a.s.l.

Figure 5c and d show the latent and sensible heat flux for

the seven stations and the average value for all these stations.

All fluxes were computed using the eddy covariance tech-

nique, with a sampling rate of at least 10 Hz. These eddy-

covariance stations were installed at heights lower than 2.5 m

above the surface. Most of the BLLAST characteristic land-

uses are represented, although the forest site is excluded due

to the station height. The 5 min fluxes of each station are

shown in blue, the average of these fluxes is indicated with

the red crosses in Fig. 5c and d. The fluxes above the differ-

ent surfaces show a variability of more than 100 % for the

sensible heat flux and approximately 50 % for the latent heat

fluxes. To represent gradually evolving fluxes and to elimi-

nate effects due to fast changing surface conditions, a sinu-

soidal function is matched with the average values (dashed

black lines). This function is used as the surface boundary

condition in the numerical experiments (see Table 1 for the

equations).

Here it is important to discuss the role of surface hetero-

geneity in the CBL dynamics of IOP5. We are aware that two

types of heterogeneity can alter the boundary layer dynamics:

nonuniform land use properties and topography. Note that

in our modeling approach, we take a bottom-up approach in

which we reproduce boundary layer dynamics closely con-

strained by observations. To improve these model results, we

externally adjust external the large-scale forcing (subsidence,

advection) to better match to the observations of the diurnal

variability of CBL growth, potential temperature and specific

humidity. In this way, these estimated large-scale forcings

integrate the effects of topography and land surface hetero-

geneity. In relation to the latter, and closer to the boundary-

layer scales, previous studies have shown that non-uniform

Atmos. Chem. Phys., 15, 4241–4257, 2015 www.atmos-chem-phys.net/15/4241/2015/
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a) b)

Figure 3. Wind profiles (speed and direction) of the lowest 10 km of the atmosphere measured by the radiosondes at 25 June 2011:

(a) 10:34 UTC and (b) 16:44 UTC.

Figure 4. Land use surrounding the BLLAST site and location of

the seven surface flux stations used to estimate the sensible and la-

tent heat flux prescribed in the model experiments. The land types

are cropland (yellow), deciduous forest (light green), urban (red),

pine forest (dark green), industrial (purple) and moor (white).

surface conditions can lead to induced secondary circulations

influencing the dynamics of the convective boundary layer

(Patton et al., 1997; Maronga and Raasch, 2013; van Heer-

waarden et al., 2014). Although there is current debate on the

minimal heterogeneity length scale required to trigger sec-

ondary circulations, the majority of the studies pointed out

that this is approximately 2zi , where zi is the boundary layer

height. Taking into account that the observed boundary layer

height during IOP5 was between 600 and 700 m and the sur-

face length scales were larger than 1000 m, in our modeling

analysis, we will omit the effects of surface heterogeneity in

the development of the CBL.

4 Numerical experiments

We design a series of numerical experiments to reproduce

IOP5 by means of mixed-layer theory and large-eddy simula-

tion (LES). Our strategy is to use both models to support the

data interpretation in order to identify and quantify the main

contributors in the development of the boundary layer. In

the numerical experiments, the observations of the boundary

layer both guide and constrain the models. The mixed-layer

model is used to reproduce the observed boundary-layer and

the large-scale forcings are inferred from the analysis. Tak-

ing the same initial and boundary conditions, we perform

systematic experiments with LES to determine the turbulent

statistics.

4.1 Experimental strategy

The numerical experiments are designed to reproduce the

boundary layer of IOP5 as well as possible within the con-

ceptual framework. This means that special attention is paid

to the inclusion of all important large scale processes, their

magnitude and evolution. The horizontal variation of these

large scale contributions are not treated.

First, a conceptual model is used to determine the evo-

lution of the bulk properties of the CBL (van Heerwaarden

et al., 2009; Vilà-Guerau de Arellano et al., 2015). Secondly,

the Dutch Atmospheric Large-Eddy Simulation (DALES,

Heus et al., 2010) is employed to study the case taking ad-

vantage of the fact that the most energetic turbulent motions

are fully resolved. The initial vertical model profiles of po-

tential temperature (θ ) and specific moisture content (q) are

www.atmos-chem-phys.net/15/4241/2015/ Atmos. Chem. Phys., 15, 4241–4257, 2015
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Figure 5. Temporal evolution of (a) the four components of the radiation budget, (b) the components of the surface energy budget, (c) sensible

heat flux and (d) latent heat flux taken on 25 June 2011. The radiation and surface energy budget were measured at site 2, characterized by a

footprint influenced by cropland and grass fields. The sensible (c) and latent heat (d) fluxes are from the seven stations shown in Fig. 4. The

black dashed line is a fitted curve of the mean of the seven measurements (red crosses) and is used as the surface forcing (sensible and latent

heat fluxes) in the numerical experiments.

derived from the early morning soundings. The observations

during the day will be used to evaluate the models. The start-

ing point is a simple case, using the initial profiles and sur-

face fluxes from the observations as input (Sect. 5). Subse-

quently, we will use the observations as a guide to obtain

the correct values for subsidence and advection of heat and

moisture (Sect. 6).

4.2 Model description

In this section, both models are introduced: a mixed-layer

model and a large-eddy simulation. The first model is a

highly conceptualized model of the boundary layer. The sec-

ond is a model that explicitly calculates most of the tur-

bulence and gives a detailed picture of the structure of the

boundary layer. Combining the two model results, we can

unravel and quantify the various contributions to the heat

and moisture budgets. Furthermore, we can obtain a detailed

overview of the structure of temperature and humidity inside

the boundary layer, and we are able to see how the turbulent

structures evolve during the day.

4.2.1 Mixed-layer model

The mixed-layer model is a bulk model that allows a con-

ceptual representation of the boundary layer. We have in-

cluded this mixed-layer model to reproduce the essential pro-

cesses of the CBL prototype. This model uses the boundary-

layer thermodynamic equations proposed by Tennekes and

Driedonks (1981). The implementation of these equations

into the model is similar to van Heerwaarden et al. (2009).

The boundary layer is represented as a single model layer

and at the entrainment region (top of the CBL), the exchange

of heat and specific moisture is parameterized by a jump

of the potential temperature and specific moisture over an

infinitesimally small height (a 0-order model). The poten-

tial temperature and specific humidity in the overlying free

troposphere are initialized with a constant lapse rate with

height. The use of the mixed-layer equations implies that

Atmos. Chem. Phys., 15, 4241–4257, 2015 www.atmos-chem-phys.net/15/4241/2015/
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the turbulence inside the boundary layer is not explicitly cal-

culated, and assumes that the potential temperature and the

specific humidity are well mixed in the convective boundary

layer and constant in height. This assumption is supported by

the efficient turbulent mixing under convective conditions.

The entrainment flux at the top of the boundary layer (βθv )

is calculated as a fixed fraction of the buoyancy flux (in our

numerical experiments equal to 0.2), which means that the

entrainment flux is subjected to the same diurnal evolution

as the prescribed surface sensible and latent heat flux. An

important feature of the model is the possibility to represent

subsidence coupled to the entrainment process at the inver-

sion zone and to discriminate how their individual contribu-

tions that govern the boundary layer growth. The subsidence

velocity is a function of the divergence of the mean horizon-

tal wind and the evolving boundary-layer height. As such,

this model enable us to study the balance between subsidence

from above and buoyant convection from below, and whether

they reach an equilibrium during the CBL development.

4.2.2 Large-eddy simulation

The large-eddy-simulation (LES) model that is used is the

latest implementation of DALES (Heus et al., 2010). DALES

solves the filtered three-dimensional thermodynamic equa-

tions, and as a result produces three-dimensional time-

evolving fields. In convective boundary layers like the one

observed on IOP5, DALES explicitly reproduces approxi-

mately 80–90 % of the energy contained by the eddies in

the boundary layer. The smaller amounts of turbulent scales

are parameterized using a sub-grid scale model that depends

on the sub-grid turbulent kinetic energy and is formulated

according to Deardorff (1974). DALES gives us a detailed

insight in the vertical structure of the boundary layer and

enables us to compare measured fluxes inside the boundary

layer with simulations, thus giving a detailed quantification

of the structure of the boundary layer. In the numerical ex-

periments, we have used a grid of 1283 with a horizontal res-

olution of 25 m and a vertical resolution of 10 m, leading to a

domain of 3200×3200×1280 m. The simulation time is 14 h.

The subsidence velocity is imposed by a function that is zero

at the ground and increases linearly to the CBL top. Above

the CBL, the subsidence velocity is constant in height. Sim-

ilar to the mixed-layer model, the subsidence strength can

change over time.

4.3 Boundary and initial conditions

Both models, DALES and mixed-layer, use identical initial

conditions and surface forcings. The models are initialized

with profiles that were derived from the morning soundings

of IOP5. The representative surface fluxes from the observa-

tions (see Sect. 3.3) are used to provide the lower boundary

conditions.

To make sure that the boundary layer is well mixed and

that all surface stability has disappeared, the models are not

started at sunrise, but at 10:00 UTC. In this way, we en-

sure that the mixed-layer equations of the mixed-layer model

hold. The soundings that were taken during the early morn-

ing and at 10:34 UTC were used to construct the initial pro-

files for both the mixed-layer model and the large-eddy sim-

ulation. The boundary-layer height at this time was matched

to the estimate made with the UHF radar and the LIDAR

(Fig. 6a). In Table 1, the initial conditions for both the mixed-

layer model and DALES are listed. As winds were light dur-

ing IOP5 (see Fig. 3) and we seek to perform a numerical

experiment that resembles the prototypical boundary layer,

no wind was prescribed in the models.

Two different numerical experiments (cases 1 and 2) are

set up to determine the influence of the large scale forcings

on the boundary layer during IOP5. In short, these cases are

– Case 1: a boundary layer governed by surface forcings,

i.e. a locally driven prototypical boundary layer;

– Case 2: same initial and boundary settings as case 1, ex-

cept that now we add the contributions of subsidence

and advection of heat and moisture, i.e., including con-

tributions of the larger scales.

5 Case 1: prototypical boundary layer

The prototype CBL is driven by the surface and entrainment

processes. In order to study whether IOP5 follows this classi-

cal prototype, we reproduce a situation that is only forced by

the surface fluxes, without any other external forcings. This

enables us to determine the influence of the surface forcing

and it provides us a first indication which large scale influ-

ences are of importance. The results are evaluated with sur-

face and upper air observations.

5.1 Boundary-layer height

We show the boundary-layer height during IOP5 estimated

by ten different methods (eight observational and two based

on results obtained employing the mixed-layer model and

DALES) in Fig. 6a. Two of the observational methods are

based on remote sensing instruments: a vertical UHF radar

and an aerosol LIDAR. Other methods to determine the

boundary-layer height are based on the profile of virtual

potential temperature inside the boundary layer. The maxi-

mum gradient of the virtual potential temperature is manu-

ally selected as the top of the boundary layer. Three meth-

ods rely on profiles made with soundings: two classical ra-

diosondes (manufactured by MODEM and GRAW) and a

new method of making frequent radiosoundings developed

by Meteo-France (Legain et al., 2013) where the sondes

can be retrieved and re-used. Three additional methods are

based on profiling by aircraft, one remotely piloted aircraft
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Table 1. Prescribed initial conditions for the numerical experiments using mixed-layer theory and DALES. The conditions correspond at

10:00 UTC at 25 June 2011 at Campistrous (France). t is the time after starting the simulation.

Dynamics and surface:

Surface pressure P0 [Pa] 101 300

Large scale subsidence velocity (ws) [m s−1] Case 1: 0.0

Case 2: −0.028 − 0.0 (see Fig. 7)

Initial boundary layer height [m] 440

Sensible heat flux [K m s−1] 0.13 sin((t − 4.933)/(13.976/π ))

Latent heat flux [g kg−1 m s−1] 0.11 sin((t − 4.430)/(15.470/π ))

Entrainment flux ratio at the top of the boundary layer [-] 0.2, only in mixed-layer model

Potential temperature:

Boundary-layer potential temperature [K] 292.50

Potential temperature jump [K] 3.25

Lapse rate of potential temperature [K m −1] 0.0055

Advection [K h −1] Case 1: 0.0

Case 2 −0.072 (constant in time)

Specific humidity :

Boundary-layer specific moisture content [g kg−1] 7.9

Specific moisture content jump [g kg−1] −3.9

Lapse rate of specific moisture content [g kg−1 m−1] 0.0

Advection [g kg−1 h−1] Case 1: 0.0

Case 2: −0.234 (constant in time)

Wind:

(Ug,Vg) [m s−1] (0.0, 0.0)

system (the SUMO platform, Reuder et al., 2009) and two

manned aircraft (the Sky Arrow operated by IBIMET/CNR

and the Piper Aztec operated by SAFIRE). The last two

methods to determine the boundary-layer height are based

on the interpretation of model results from the mixed-layer

model and DALES. The mixed-layer model explicitly calcu-

lates the boundary-layer height assuming that this height is

equal to the maximum of the potential temperature gradient

and the minimum of the buoyancy heat flux. In DALES, the

boundary-layer height is diagnosed in the post-processing by

assuming that the top of the boundary layer is at the height

where the buoyancy flux vertical profile has its largest nega-

tive value.

As shown in Fig. 6a, there is a large amount of scatter be-

tween different estimates. In analyzing the observations in

more detail, we find that, even if we do not take outliers into

account, the differences in boundary-layer height can be in

the order of 100 m. This number (≈ 100–200 m) is similar

to the depth of the entrainment zone measured by the Lidar.

From the observations, we notice that the soundings gen-

erally report lower boundary-layer heights than the remote

sensing methods, which is to be expected as different physi-

cal parameters are used to deduce the boundary-layer height.

Not all observation profiles were taken at the same location.

A site near stations 4 and 5 (Fig. 4) was used for UHF, LI-

DAR and soundings, the remotely piloted aircraft soundings

were taken near stations 6 and 7. The manned aircraft, the

Piper Aztec and Sky Arrow, were even further away from

the site (up to 20 km) because of airspace regulations. Due to

the mentioned surface heterogeneity, differences can occur

between observations. Most of the soundings are point mea-

surements, whereas the aircraft makes a helical profile, sam-

pling a greater volume of the boundary layer. In Fig. 6a, the

observations show a growing CBL until 14:00 UTC. Later

in the afternoon, the growth becomes slightly negative. In

contrast, the model results show the expected behavior un-

der clear convective conditions driven solely by surface and

entrainment processes: a continuous growth, slowing down

in the late afternoon (after 16:00 UTC), with the maximum

boundary-layer height at the beginning of the evening.

Taking into account the scatter associated with the obser-

vations, there is a discrepancy of roughly 400–500 m be-

tween the observations and the results from the numerical

experiments. This is a clear indication that processes other

than surface heating and entrainment play a role.
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5.2 Mixed-layer potential temperature and specific

humidity

Figure 6b shows model results and observations of the

mixed-layer potential temperature and the specific humid-

ity. The sounding values are calculated by taking the average

value of the sounding between 100 m above the ground and

100 m below the top of the boundary layer. The DALES val-

ues are calculated in a similar fashion. The observations at

60 m height were taken at a tall tower at station 5 (Fig. 4).

The potential temperature observations at 60 m follow a

similar pattern as the profile average observations of the

mixed layer for the temperature. Both the mixed-layer model

and DALES give a correct representation of the mixed-layer

potential temperature, in spite of the large disagreement in

the boundary-layer height.

The observations of specific humidity show a lot of

scatter between the different instrument platforms. Espe-

cially within the mixed-layer moisture observations from the

soundings (the triangles in Fig. 6b), the differences are large

and can amount up to 1.5 g kg−1. Overall, we first observe

a slight increase, followed by a gradual decline, probably

controlled by the entrainment of dry air. After 15:00 UTC,

the specific moisture content starts to rise again. This pat-

tern is the strongest in the tall tower of station 5 (the crosses

in Fig. 6b), although on average the soundings also show a

slight moistening trend. This could be related to moisture ad-

vection in the late afternoon (Couvreaux et al., 2015) or due

to surface evaporation that is not being offset by the entrain-

ment of dry air originated at the free troposphere. Although

both models show a small amount of drying around noon,

it is much less than observed near the surface at the 60 m-

tower. The moistening at the end of the afternoon is not yet

reproduced by the models. Note that there is a discrepancy

between the specific moisture content of the model and the

observations of the 60 m-tower at the start of the model run.

This is because the initial profiles are based upon soundings

of the entire boundary layer. These can differ significantly

from the observations at 60 m height as can be seen in the

observations later during the day.

It is relevant to point out here that one would expect

slightly lower values of the model results compared to the

observations of the specific humidity because of enhanced

entrainment of dry air. Model results tend to overestimate

the specific humidity above the surface, as shown by Fig. 6b,

though the agreement with the more representative averaged

bulk values calculated from the radiosounding observations

is more satisfactory, in spite of the larger variability. A po-

tential solution is to infer more complicate temporal evolu-

tions of the advection of moisture, but they will have a minor

impact on the overall characterization of the boundary layer

dynamics during IOP5.

6 Case 2: including large-scale subsidence and

advection

Case 2 includes the contributions of subsidence motions and

large-scale advection of heat and moisture to the develop-

ment of the atmospheric boundary layer during IOP5. The

values and evolution for subsidence and advection of poten-

tial temperature and specific humidity were determined by

constraining the model results to the observations of bound-

ary layer height and the mixed-layer values of potential tem-

perature and specific moisture. The evolution of subsidence

was first adjusted using the observations of the CBL growth

gathered by eight different instruments. In a second stage,

we use the θ - and specific humidity evolution to estimate the

necessary advection to match the observational evolution of

these state variables. The initial- and boundary conditions are

listed in Sect. 4.3. The retrieved value and evolution for sub-

sidence velocity are shown in Fig. 7 as well as the values

for subsidence calculated using the ECMWF model above

the BLLAST observational site characterized by coarse spa-

tial resolution and lower temporal resolution. The contribu-

tions of advection of heat and moisture are given between

brackets in Table 1. Note that the advection is applied only

inside the boundary layer. From Fig. 7, we observe that sub-

sidence velocity has a dependence on time that follows a di-

urnal evolution with maximum values of −0.028 m s−1 be-

tween 13:30 and 14:00 UTC. The values from the ECMWF

model are lower and have far less temporal detail than the

ones estimated iteratively. Figure 7 indicates that in regions

with nearby complex topography it might be required to have

estimations of subsidence with higher temporal frequency

to properly reproduce the boundary-layer dynamics. This

variation on time of the subsidence can be a relevant pro-

cess in modeling this situation with more complex numerical

weather prediction models (Couvreaux et al., 2015).

Together with the subsidence, Fig. 7 shows the result-

ing values of entrainment velocity for both the mixed-layer

model and DALES. The entrainment rate of both models is

calculated following Lilly (1968):

we = −
w′θ ′ve

1θvzi
=
∂h

∂t
− ws. (1)

Note that the buoyancy flux at the entrainment zone

(−w′θ ′ve
) is a fixed fraction (0.2) of the prescribed surface

buoyancy flux. The potential virtual temperature jump at the

boundary layer top (1θvzi ) is calculated explicitly whereas

the subsidence velocity (ws) must be imposed. As Fig. 7

shows, the diurnal evolution of the entrainment is very simi-

lar in both models. The overestimation in the mixed-layer re-

sults is due to the linear profile of the buoyancy flux assumed

in mixed-layer theory that simplifies the curve behavior of

the buoyancy flux in the entrainment zone (see Fig. 11).

By analyzing the magnitude of subsidence and entrain-

ment velocities, both are comparable and nearly cancel each
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a) b)

Figure 6. Temporal evolution of (a) boundary-layer height and (b) mixed-layer potential temperature and specific humidity at 25 June 2011

(case 1).

Figure 7. Temporal evolution of the entrainment velocity and pre-

scribed subsidence velocities at the top of the boundary layer for

the run with prescribed subsidence (case 2). The subsidence values

calculated by ECMWF model are also shown.

other after 12:00 UTC. This is in agreement with the evo-

lution of the observed boundary-layer height that remains

almost constant during the afternoon as shown by Eq. (1).

Note that the entrainment is mainly driven by the buoyancy

heat flux at the surface and has a clear diurnal evolution. The

subsidence shows a very similar evolution, thus suggesting

the influence of non-local processes that are forced by the di-

urnal cycle (De Wekker, 2008). An induced circulation such

as a mountain circulation could lead to such an evolution of

subsidence (see Fig. 1).

In Fig. 8, we show the temporal evolution of the boundary-

layer height, the mixed-layer potential temperature and

mixed-layer specific humidity. For Case 2, the observations

and the models show a satisfactory agreement for boundary-

layer height and bulk potential temperature (Fig. 8a). The ob-

servations of bulk specific moisture content are more scat-

tered, thus making a comparison between model and ob-

servations more difficult. In general, the models calculate a

boundary layer height that is slightly overestimated. How-

ever, as we will show in Sect. 6.1, the models reproduce the

vertical structure of the boundary layer satisfactorily.

The evolution of the mixed-layer potential temperature

agrees well with the measurements (Fig. 8b). The moisture

content shows a decline in the early afternoon, somewhat

later than the observations from the 60 m tower. The moist-

ening at the end of the afternoon is not represented in the

models. This moistening signal comes mainly from the sta-

tions near the surface and could be related to moist advection

in the late afternoon. However, as the observations show a

lot of scatter, this change of moisture advection in time is

not included in the simulations. A mesoscale modeling study

could give more insight in the evolution of the advection of

heat and moisture.

6.1 Vertical profiles of potential temperature and

specific moisture content

In Fig. 9a we show the vertical potential temperature profiles

calculated by the two models and by observations taken at

12:57 UTC. The potential temperature profiles of both mod-

els are comparable to the observations. Just above the bound-

ary layer, the observed free troposphere is more stable than

higher up. The models however are initialized with a single

lapse rate for the entire free troposphere. Comparing the po-

tential temperature jump at the top of the boundary layer,

both the sounding and DALES show an entrainment zone
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a) b)

Figure 8. Temporal evolution of (a) boundary-layer height and (b) mixed-layer potential temperature (θ ) and specific humidity (q) on

25 June 2011 (case 2).

with an inversion depth of approximately 100 m. It is also

interesting to stress that the observed profile shows a weak

stable stratification above 300 m. Two reasons can create this

stratification within the well-mixed boundary layer: (a) land-

surface heterogeneity (Ouwersloot et al., 2011) and (b) the

presence of absorbing aerosols (Barbaro et al., 2013). Our

tentative explanation is the following. With respect to (b),

aerosol optical depth measurements during BLLAST range

between 0.08 and 0.11. These values can lead to a reduc-

tion of the incoming shortwave radiation (≈ 10–20 W m−2)

(Barbaro et al., 2013) and depending on the aerosol absorb-

ing and scattering characteristics a stabilization of the up-

per region in the boundary layer. With respect to (a), and al-

though the length scales of surface heterogeneity are smaller

than the boundary layer height, the patchy surface around

the BLLAST experimental site might induce secondary cir-

culations that are superimposed to the boundary-layer struc-

tures. These induced circulations enhance the entrainment of

warmer and drier air originating from the free troposphere,

stabilizing the upper region of the CBL.

In Fig. 9b the calculated and observed vertical profile of

specific moisture at 12:57 UTC are presented. The specific

moisture profile is less well mixed with height than the po-

tential temperature profile. Both models compare well with

the sounding inside the boundary layer. DALES reproduces

the values of specific moisture at the top of the boundary

layer and the transition to the free troposphere better than the

mixed-layer model. However, both models are approximately

1 g kg−1 too dry in the free troposphere. The initial values of

specific moisture were matched to the soundings, but there

could be moistening of the free troposphere during the day

that is not taken into account in the numerical experiments.

Similar to the 12:57 UTC potential temperature profile, the

specific humidity profile shows microstructures, suggesting

a signature of the land surface heterogeneity with drier air in

the upper region of the convective boundary layer (between

300 and 600 m).

Figure 10 shows the profiles of potential temperature and

specific moisture at 16:50 UTC, taken by the Sky Arrow air-

craft. These soundings were taken in a helical profile with a

sampling frequency of 50 Hz. This profile was made approx-

imately 7 km southwest of the main site, relatively close to

the mountains. The advantage of a helical sounding is that

more of the boundary layer is sampled at each level. In this

way, the measurements have a larger footprint and in con-

sequence are representative of a larger area. If we compare

Figs. 9a and 10a, the profile taken at 16:50 UTC shows more

small scale fluctuations. This is partly due to the higher sam-

pling frequency and partly due to the helical profile. More-

over, the profile is characterized by an almost constant value,

indicating well mixed conditions. By comparing models and

observations at 16:50 UTC, the mixed-layer potential tem-

perature compares well to the observations. For this specific

profile, the boundary-layer height is slightly overestimated

by the models (see also Fig. 8a). This sounding was taken

in close proximity to the Pyrenees (7 km southwest of the

main site), which means that although the soundings are de-

scribed in height above ground level, this column of air was

higher in an absolute sense. With the specific moisture con-

tent taken at 16:50 UTC (Fig. 10b), the signal is even more

turbulent than the signal of potential temperature. The mixed-

layer averaged specific moisture content is underestimated by

1 g kg−1, but the magnitude of the jump of specific moisture

at the top of the boundary layer is similar between obser-

vations and models. The specific humidity of the free tro-

posphere is underestimated by both models, which could be

explained by the moistening trend described for the sounding

at 12:57 UTC.
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a) b)

Figure 9. Vertical profile of (a) potential temperature (θ ) and (b) specific humidity (q) at 12:57 UTC: frequent radiosounding, DALES and

mixed-layer model.

a) b)

Figure 10. Vertical profile of (a) potential temperature (θ ) and (b) specific humidity (q) at 16:50 UTC: aircraft profiling, DALES and mixed-

layer model.

6.2 Turbulent structure

Our second aim was to determine whether large-scale forc-

ings exert an influence on the turbulent structure of IOP5

and if this structure is consistent with the prototypical CBL.

Therefore, we calculate the higher-order moments of the

thermodynamic fluxes and variances from the high frequency

aircraft observations and compare them to the DALES calcu-

lations. To this end, we employ two observational data sets:

1. turbulent data collected by two aircraft at various

heights within the boundary layer;

2. time series of turbulent kinetic energy (TKE) taken at

surface flux stations; here, similar to the sensible and

latent heat fluxes, we calculate an average TKE from all

the stations shown in Fig. 4.

Note that the calculated flux along a flight leg represents

an integrated value over a large horizontal distance, thus pro-

viding a larger footprint, as opposed to the smaller footprints

of the local point measurements of the eddy covariance sta-

tions. This enables us to do a more adequate comparison with

DALES results that are forced by a horizontally homoge-

neous surface flux, derived from the average of the flux ob-

servations (see Sect. 3.3). The data from the eddy covariance

stations is used to study the temporal evolution of the turbu-

lence in the surface layer. We compare this with the vertically

integrated TKE using the DALES results. This data set has a

high temporal resolution which consequently enables us to

describe and explain the decay of turbulence during the late

afternoon transition.
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6.2.1 Vertical profiles of fluxes

In order to obtain a more detailed understanding of the

boundary-layer dynamics, we study the variation with height

of the potential temperature and specific humidity fluxes. Be-

tween 13:51 and 15:06 UTC, two aircraft: the Sky Arrow

and the Piper Aztec gathered high frequency measurements

that are compared with the turbulent fluxes calculated using

DALES. The observations were made at different levels, and

therefore we can make a vertical profile of the second or-

der moments during this hour. Figures 11 and 12 show the

vertical profiles of the fluxes of heat and moisture inside the

boundary layer. The observations are taken along legs of ap-

proximately 40 km (10–15 min of flight) in an east–west di-

rection. The simulated fluxes from DALES correspond to a

30 min averaged flux for the entire domain from 14:15 until

14:45 UTC (solid line) with dotted lines indicating the mini-

mum and maximum fluxes during the hour at which the ob-

servations are taken. Around heights of 525, 625 and 725 m,

two legs were flown with different aircraft. Note that these

observations were not taken at the same moment.

The profile of the sensible heat flux is shown in Fig. 11.

Observations and model are in good agreement. The entrain-

ment zone, where the heat flux is negative, is clearly defined

in both observations and the model and shows a good match.

The linear decrease from the surface flux to the negative heat

flux in the entrainment zone corresponds well between model

and observations. It is in this region that there is a counter-

gradient sensible heat flux with positive values for the flux

and the potential temperature gradient. The variation of the

modeled heat flux at the surface indicates that this period is

already in a phase of the day where the heat fluxes decline

(Fig. 5c).

Figure 12 shows the observed and modeled latent heat

flux vertical profiles. In spite of the imposed (observed, see

Sect. 3.3) surface heat fluxes, DALES flux calculations over-

estimate the aircraft measurements. LeMone et al. (2002)

and Górska et al. (2008) have discussed underestimations

of the flux measurements taken by aircraft compared to sur-

face point measurements. At the three highest observations,

close to the entrainment zone, model and observations com-

pare well, indicating that here the turbulent exchange is mod-

eled correctly. However, inside the boundary layer, the mod-

eled fluxes are roughly twice as high as the observed fluxes.

Both model and observations do show latent heat flux pro-

files that are almost constant with height indicating that the

evaporation at the surface is compensated by the drying at

the entrainment zone. Consequently, the moisture content in-

side the boundary layer is in a near steady-state during this

period. This is further corroborated by the observations of

the specific moisture content near the surface (see the 60 m

observations in Fig. 8b).

In Fig. 13, the non-dimensional buoyancy flux for the same

period as Figs. 11 and 12 is shown against the dimensionless

height. The buoyancy flux is scaled with the surface buoy-

Figure 11. Vertical profile of the sensible heat flux between 14:00

and 15:00 UTC. DALES data correspond to Case 2. Dotted lines

indicate the minimum and maximum fluxes calculated by DALES

during the hour at which the observations are taken

ancy flux, the height is scaled with the boundary-layer height

from the mixed-layer model. Modeled buoyancy fluxes from

DALES are shown together with aircraft observations. Be-

cause the fluxes are scaled with the surface flux, the spread

due to the difference in timing disappears. Overall, the model

results match closely with the observations and confirm the

notion that the boundary layer for IOP5 behaves similar

to the prototypical boundary layer. Model and observations

show a clear linear decrease with height in the lower 75 % of

the boundary layer. In the top 20–25 % of the boundary layer,

the entrainment zone is well defined. The buoyancy flux ra-

tio (βθv =−(w
′θ ′v)e/(w

′θ ′v)o) is very similar to values found

by Davis et al. (1997) and Górska et al. (2008) (βθv ' 0.15–

0.20). The model results are horizontally averaged and the

aircraft measurements integrate over a distance of roughly

40 km. All values presented in Fig. 13 are therefore spatially

integrated. Local variations may still exist.

6.2.2 Decay of turbulent kinetic energy

We complete the study by analyzing a relevant aspect of the

afternoon transition extensively studied in more academic

LES studies (Nieuwstadt and Brost, 1986; Sorbjan, 1997;

Pino et al., 2006; Beare et al., 2006; van Driel and Jonker,

2011): the decay of TKE. This decay plays a key role in the

transition from CBL to SBL. We employ the same strategy

as before: combining cases 1 and 2 from DALES with sur-

face observations. We show in Fig. 14 how TKE evolves in
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Figure 12. Same as Fig. 11, but now for the latent heat flux.

time from 12:00 to 20:00 UTC. It is important to note that the

surface observations are an average of the seven surface sta-

tions and that these measurements have been taken 2 or 3 m

above the surface. The TKE calculated by LES represents

the lower 10 % of the boundary layer, approximately the first

60–70 m above the surface. For this calculation, the top of

the boundary layer is defined as 30 m below the level where

the buoyancy flux reaches its minimum value. Note that both

LES cases are forced without any wind. Observations indi-

cate that the wind was weak during the day (< 6 m s−1, see

Fig. 3). Still, the exclusion of wind in our simulations reduces

the amount of TKE that is produced due to the conversion

from mean kinetic energy by the shear term.

In Fig. 14, the surface observations show the highest val-

ues of TKE whereas Case 2 shows the least. The turbulent

fields generated by both DALES simulations show an ear-

lier decay of TKE than the observations, even when we take

the lower amount of TKE during the early afternoon into ac-

count. Case 2 starts decaying earlier than Case 1. The TKE

decay rate of the surface observations is slower than the mod-

els in the late afternoon. Even though the buoyancy will be

still positive due to the positiveness of the latent heat flux,

after 18:00 UTC the sensible heat flux (see Fig. 5b) becomes

zero, and the observations show a sharp decline in TKE.

To complete this discussion, we refer to the research of the

TKE evolution during the afternoon transition conducted by

Darbieu et al. (2014) (this special issue) in the whole atmo-

spheric boundary layer. In their study, which focus on an-

other IOP during BLLAST, they found that the TKE decay

starts at the higher levels of the boundary layer and with time

descends to the surface.

Figure 13. Same as Fig. 11, but now for the non-dimensional buoy-

ancy flux and height.

The difference between cases 1 and 2 is explained by the

fact case 1 is characterized by much more vigorous growth

during the afternoon, with the boundary layer becoming

much deeper, enabling the formation of larger length scales.

Case 2, which includes subsidence and advection (see the

method to estimate these two forcing at the beginning of

Sect. 6), has a much more suppressed growth, limiting the

growth and size of the largest eddies. Therefore, the turbu-

lent motions also become more suppressed. That means that

if we take large scale forcings into account, the levels of TKE

become lower and the decay of TKE starts slightly earlier.

We made Fig. 14b by scaling the TKE evolution using

the convective velocity (w∗) and the moment of maximum

sensible heat flux, and the time with the eddy turnover time

(t∗ = zi/w∗), similar to Nieuwstadt and Brost (1986). Em-

ployed scales are t0 = 11:55 UTC, t∗ = 0.1172 h (approxi-

mately 7 min) and w∗ = 1.457 m s−1. Here, we observe the

earlier decay of case 2 more clearly, although the difference

remains fairly small. Both model runs show lower levels of

TKE than the surface observations. Other factors that might

lead to lower levels of TKE are the exclusion of wind in

the models (absence of the contribution of shear to maintain

TKE) and local secondary circulations due to surface hetero-

geneity, as suggested in Sect. 6.1. Our final explanation in

analyzing the modeled TKE evolution is that the largest tur-

bulent scales in case 1 maintain larger levels of turbulence,

slightly delaying the decay process.
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Figure 14. Temporal evolution of TKE in the boundary layer. Left

panel: surface measurements and DALES experiment cases 1 and 2.

Right panel: non-dimensional measurements and DALES results.

7 Conclusions

We find quantitative evidence that subsidence motions and

the large-scale advection of heat and moisture are key contri-

butions to the heat and moisture budgets of the atmospheric

boundary layer observed during the BLLAST experiment.

Focusing on IOP5, we quantify these two contributions in

a numerical experiment forced by surface observations and

resulting entrainment to describe the diurnal evolution of the

budget of heat and moisture. We intensively employ vertical

radiosoundings and remote sensing observations combined

with large-eddy simulation and mixed-layer theory to deter-

mine and discuss the boundary-layer height using eight dif-

ferent measurement techniques.

The systematic numerical experiments enable us to break

down the various components of the heat and moisture bud-

get that determine the boundary-layer height evolution. As

a result, we find that by only taking surface and entrain-

ment fluxes into account, we overestimate the boundary-

layer depth by 70 %. Constraining our numerical experiments

with the observations of the boundary-layer depth and bulk

quantities, we are able to quantify the magnitude and tem-

poral evolution of subsidence and advection. The subsidence

velocity shows a diurnal evolution and is slightly larger in

magnitude than the values found with the ECMWF model

(with lower spatial and temporal resolution). This diurnal

evolution of subsidence suggests the influence of processes

that are governed by the diurnal heating cycle, such as a

mountain circulation. When these large-scale forcings are in-

cluded, LES and mixed-layer model represent the evolution

of the state variables and the turbulent statistics (LES).

In analyzing the potential temperature flux vertical profile,

we find a good agreement between the measurements and

large-eddy simulations. This reinforces that BLLAST bound-

ary layers follow the CBL prototype, provided the adequate

estimation of large-scale forcings. For the moisture vertical

profile, the discrepancy between models and observations

is larger, but both yield similar values of the ratio between

entrainment- (drying) and surface flux (evaporation). Espe-

cially at the end of the afternoon, when observations show a

rise in specific moisture content, models and observations di-

verge. For TKE, we do find a fast decay rate around the time

the sensible heat flux becomes zero. The large-eddy simula-

tions show a more gradual decline. Even though the large-

scale forcings do not directly disturb the turbulent vertical

structure, we find that the numerical simulation, including

subsidence and advection is characterized by smaller turbu-

lent kinetic energy and starts to decay earlier than the simula-

tion only driven by surface and entrainment processes. This

is mainly due to the shallower and weaker large turbulent

eddies limited by the atmospheric boundary layer growth.

Therefore, we recommend adequately identifying the large-

scale forcings in studying the afternoon decay.

Finally, we advocate the use of our approach to estimate

the contributions of subsidence and horizontal advection of

heat and moisture. The combination of observations and

mixed-layer theory can be very useful in the interpretation

of the observed heat and moisture budget, yielding comple-

mentary data to the estimations given by numerical weather

forecast models. The approach proposed here can be applied

to other cases with sufficient observational density and can

be of particular use for the other IOPs of the BLLAST cam-

paign. Two major advantages of our proposed method are

the higher temporal resolution and that the modeling is done

at a scale close to the surface- and boundary-layer observa-

tions. This enables us to carry out in-depth studies of the di-

urnal evolution, as opposed to ECMWF model output that

provides output at a lower spatial and temporal evolution.

In relation to the validity of the prototypical CBL, the re-

sults obtained here with the mixed-layer model ensure that

the canonical CBL is still a valid representation of the di-

urnal atmospheric boundary layer and afternoon transition,

provided that the large-scale influences are properly quanti-

fied, considering their large influence on the budgets of heat

and moisture.
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