47 research outputs found

    Facilitating children's self-concept: A rationale and evaluative study

    Get PDF
    This study reports on the design and effectiveness of the Exploring Self-Concept program for primary school children using self-concept as the outcome measure. The program aims to provide a procedure that incorporates organisation, elaboration, thinking, and problem-solving strategies and links these to children's multidimensional self-concept. The results of this research support the notion that teachers and guidance counsellors need to establish a nonthreatening framework that allows them to discuss with children a range of relevant issues related to peer pressure, parent relations, self-image, body image, gender bias, media pressure, values and life goals, in a systematic, objective and cooperative manner. Within the paper, notions associated with self-concept maturation, 'crystallisation' of self-concept beliefs, cognitive differentiation and self-concept segmentation are reviewed

    Social Support and Health: A Theoretical Formulation Derived from King's Conceptual Framework

    Full text link
    This article describes the development and initial empirical testing of a theoretical formulation of social support, family, health, and child health derived from Imogene King's conceptual framework for nursing. A correlational design was used to test the formulation with 103 families who have children with diabetes mellitus. Three hypotheses were sup ported : parents' social support had a direct and positive effect on family health, parents' social support and child's social support were positively related, and illness factors had a direct and negative effect on child health. Both the supported and unsupported hypotheses are discussed in terms of the present substantive knowledge base and evidence of validity for King's framework. Direction for further theory development and research are identified.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68995/2/10.1177_089431848900200309.pd

    An island view of endemic rarity—Environmental drivers and consequences for nature conservation

    Get PDF
    Aim: Rarity—an important measure for conservation biogeography—can vary over many orders of magnitude. However, it is unclear which regional-scale abiotic conditions drive processes affecting rarity of endemic species on islands. To support conservation efforts, we (1) assess the main abiotic drivers of endemic rarity, (2) determine how well existing protected areas (PAs) coincide with hotspots of endemic rarity and (3) introduce and evaluate a new hypervolume-based rarity estimator. Location: La Palma (Canary Islands). Methods: We recorded all present endemic vascular plant species in 1,212 plots covering the entire island. We calculated endemic rarity (corrected range-rarity richness for endemics) using a rarity estimation approach based on kernel density estimations (hypervolume approach). We performed a sensitivity analysis based on multiple linear regressions and relative importance estimations of environmental drivers to estimate the performance of the hypervolume-based rarity estimation compared to standard methods (occurrence frequency, convex hulls, alpha hulls). Results: Climate variables (mean annual temperature, climatic rarity, precipitation variability) best explained archipelago endemic (AE) and single-island endemic (SIE) rarity. Existing PAs covered the majority of AE and SIE rarity, especially national and natural parks as well as the Natura 2000 sites. In our study system, hypervolumes performed better than standard measures of range size. Main conclusion: Both AE and SIE rarity on La Palma show a clear spatial pattern, with hotspots of endemic rarity found at high elevations and in rare climates, presumably owing to geographical and climatic constraints and possibly anthropogenic pressure (e.g., land use, introduced herbivores, fire). Areas of high rarity estimates coincide with the distribution and extent of PAs on La Palma, especially since the recent addition of the Natura 2000 sites. The hypervolume approach is a promising tool to estimate species range sizes, and can be applied on all scales where point/plot data are available.European UnionElite Network of Bavari

    Topography-driven isolation, speciation and a global increase of endemism with elevation

    Get PDF
    Aim: Higher-elevation areas on islands and continental mountains tend to be separated by longer distances, predicting higher endemism at higher elevations; our study is the first to test the generality of the predicted pattern. We also compare it empirically with contrasting expectations from hypotheses invoking higher speciation with area, temperature and species richness. Location: Thirty-two insular and 18 continental elevational gradients from around the world. Methods: We compiled entire floras with elevation-specific occurrence information, and calculated the proportion of native species that are endemic (‘percent endemism’) in 100-m bands, for each of the 50 elevational gradients. Using generalized linear models, we tested the relationships between percent endemism and elevation, isolation, temperature, area and species richness. Results: Percent endemism consistently increased monotonically with elevation, globally. This was independent of richness–elevation relationships, which had varying shapes but decreased with elevation at high elevations. The endemism–elevation relationships were consistent with isolation-related predictions, but inconsistent with hypotheses related to area, richness and temperature. Main conclusions: Higher per-species speciation rates caused by increasing isolation with elevation are the most plausible and parsimonious explanation for the globally consistent pattern of higher endemism at higher elevations that we identify. We suggest that topography-driven isolation increases speciation rates in mountainous areas, across all elevations and increasingly towards the equator. If so, it represents a mechanism that may contribute to generating latitudinal diversity gradients in a way that is consistent with both present-day and palaeontological evidence

    Soil biochar amendment affects the diversity of nosZ transcripts: Implications for N 2 O formation

    No full text
    10.1038/s41598-017-03282-yScientific Reports71333
    corecore