528 research outputs found

    Increased circulating ANG II and TNF-α represents important risk factors in obese Saudi adults with hypertension irrespective of diabetic status and BMI

    Get PDF
    Central adiposity is a significant determinant of obesity-related hypertension risk, which may arise due to the pathogenic inflammatory nature of the abdominal fat depot. However, the influence of pro-inflammatory adipokines on blood pressure in the obese hypertensive phenotype has not been well established in Saudi subjects. As such, our study investigated whether inflammatory factors may represent useful biomarkers to delineate hypertension risk in a Saudi cohort with and without hypertension and/or diabetes mellitus type 2 (DMT2). Subjects were subdivided into four groups: healthy lean controls (age: 47.9±5.1 yr; BMI: 22.9±2.1 Kg/m2), non-hypertensive obese (age: 46.1±5.0 yr; BMI: 33.7±4.2 Kg/m2), hypertensive obese (age: 48.6±6.1 yr; BMI: 36.5±7.7 Kg/m2) and hypertensive obese with DMT2 (age: 50.8±6.0 yr; BMI: 35.3±6.7 Kg/m2). Anthropometric data were collected from all subjects and fasting blood samples were utilized for biochemical analysis. Serum angiotensin II (ANG II) levels were elevated in hypertensive obese (p<0.05) and hypertensive obese with DMT2 (p<0.001) compared with normotensive controls. Systolic blood pressure was positively associated with BMI (p<0.001), glucose (p<0.001), insulin (p<0.05), HOMA-IR (p<0.001), leptin (p<0.01), TNF-α (p<0.001) and ANG II (p<0.05). Associations between ANG II and TNF-α with systolic blood pressure remained significant after controlling for BMI. Additionally CRP (p<0.05), leptin (p<0.001) and leptin/adiponectin ratio (p<0.001) were also significantly associated with the hypertension phenotype. In conclusion our data suggests that circulating pro-inflammatory adipokines, particularly ANG II and, TNF-α, represent important factors associated with a hypertension phenotype and may directly contribute to predicting and exacerbating hypertension risk

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Primary carbonatite melt from deeply subducted oceanic crust

    Get PDF
    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.4 page(s

    What You Find Depends on How You Measure It: Reactivity of Response Scales Measuring Predecisional Information Distortion in Medical Diagnosis

    Get PDF
    “Predecisional information distortion” occurs when decision makers evaluate new information in a way that is biased towards their leading option. The phenomenon is well established, as is the method typically used to measure it, termed “stepwise evolution of preference” (SEP). An inadequacy of this method has recently come to the fore: it measures distortion as the total advantage afforded a leading option over its competitor, and therefore it cannot differentiate between distortion to strengthen a leading option (“proleader” distortion) and distortion to weaken a trailing option (“antitrailer” distortion). To address this, recent research introduced new response scales to SEP. We explore whether and how these new response scales might influence the very proleader and antitrailer processes that they were designed to capture (“reactivity”). We used the SEP method with concurrent verbal reporting: fifty family physicians verbalized their thoughts as they evaluated patient symptoms and signs (“cues”) in relation to two competing diagnostic hypotheses. Twenty-five physicians evaluated each cue using the response scale traditional to SEP (a single response scale, returning a single measure of distortion); the other twenty-five did so using the response scales introduced in recent studies (two separate response scales, returning two separate measures of distortion: proleader and antitrailer). We measured proleader and antitrailer processes in verbalizations, and compared verbalizations in the single-scale and separate-scales groups. Response scales did not appear to affect proleader processes: the two groups of physicians were equally likely to bolster their leading diagnosis verbally. Response scales did, however, appear to affect antitrailer processes: the two groups denigrated their trailing diagnosis verbally to differing degrees. Our findings suggest that the response scales used to measure information distortion might influence its constituent processes, limiting their generalizability across and beyond experimental studies

    Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica

    Get PDF
    Countless seamounts occur on Earth that can provide important constraints on intraplate volcanism and plate tectonics in the oceans, yet their nature and origin remain poorly known due to difficulties in investigating the deep ocean. We present here new lithostratigraphic, age and geochemical data from Lower/Middle Jurassic and Lower Cretaceous sequences in the Santa Rosa accretionary complex, Costa Rica, which offer a valuable opportunity to study a small-sized seamount from a subducted plate segment of the Pacific basin. The seamount is characterized by very unusual lithostratigraphic sequences with sills of potassic alkaline basalt emplaced within thick beds of radiolarite, basaltic breccia and hyaloclastite. An integration of new geochemical, biochronological and geochronological data with lithostratigraphic observations suggests that the seamount formed ~175 Ma ago on thick oceanic crust away from subduction zones and mid-ocean ridges. This seamount travelled ~65 Ma in the Pacific before accretion. It resembles lithologically and compositionally “petit-spot” volcanoes found off Japan, which form in response to plate flexure near subduction zones. Also, the composition of the sills and lava flows in the accreted seamount closely resembles that of potassic alkaline basalts produced by lithosphere cracking along the Line Islands chain. We hypothesize based on these observations, petrological constraints and formation of the accreted seamount coeval with the early stages of development of the Pacific plate that the seamount formed by extraction of small volumes of melt from the base of the lithosphere in response to propagating fractures at the scale of the Pacific basin

    A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)

    Get PDF
    African swine fever virus (ASFV) encodes proteins that manipulate important host antiviral mechanisms. Bioinformatic analysis of the ASFV genome revealed ORF I329L, a gene without any previous functional characterization as a possible inhibitor of TLR signaling. We demonstrate that ORF I329L encodes a highly glycosylated protein expressed in the cell membrane and on its surface. I329L also inhibited dsRNA-stimulated activation of NFκB and IRF3, two key players in innate immunity. Consistent with this, expression of I329L protein also inhibited the activation of interferon-β and CCL5. Finally, overexpression of TRIF reversed I329L-mediated inhibition of both NFκB and IRF3 activation. Our results suggest that TRIF, a key MyD88-independent adaptor molecule, is a possible target of this viral host modulation gene. The demonstration of an ASFV host evasion molecule inhibiting TLR responses is consistent with the ability of this virus to infect vertebrate and invertebrate hosts, both of which deploy innate immunity controlled by conserved TLR systems
    corecore