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ABSTRACT 

Countless seamounts occur on Earth that can provide important constraints on intraplate 

volcanism and plate tectonics in the oceans, yet their nature and origin remain poorly known 

due to difficulties in investigating the deep ocean. We present here new lithostratigraphic, age 

and geochemical data from Lower/Middle Jurassic and Lower Cretaceous sequences in the 

Santa Rosa accretionary complex, Costa Rica, which offer a valuable opportunity to study a 

small-sized seamount from a subducted plate segment of the Pacific basin. The seamount is 

characterized by very unusual lithostratigraphic sequences with sills of potassic alkaline 

basalt emplaced within thick beds of radiolarite, basaltic breccia and hyaloclastite. An 

integration of new geochemical, biochronological and geochronological data with 

lithostratigraphic observations suggests that the seamount formed ~175 Ma ago on thick 

oceanic crust away from subduction zones and mid-ocean ridges. This seamount travelled ~65 

Ma in the Pacific before accretion. It resembles lithologically and compositionally “petit-

spot” volcanoes found off Japan, which form in response to plate flexure near subduction 

zones. Also, the composition of the sills and lava flows in the accreted seamount closely 

resembles that of potassic alkaline basalts produced by lithosphere cracking along the Line 

Islands chain. We hypothesize based on these observations, petrological constraints and 

formation of the accreted seamount coeval with the early stages of development of the Pacific 

plate that the seamount formed by extraction of small volumes of melt from the base of the 

lithosphere in response to propagating fractures at the scale of the Pacific basin. 

 

1. Introduction 

Countless seamounts occur in the oceans, which can form by thermally-driven 

processes and the presence of deep mantle plumes, or tectonically-driven processes and 

fissure propagation in the lithosphere. Seamounts provided important constraints on intraplate 
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volcanism and plate tectonics in the last decades, but our current knowledge relies essentially 

on the study of very large volcanoes (tall seamounts or ocean islands), whereas ~90% of the 

seamounts are <500 m tall and difficult to chart and sample in the deep ocean [Hillier and 

Watts, 2007; Wessel et al., 2010]. Small-sized seamounts are a major but poorly understood 

feature on Earth, and remain to be studied in detail. A particular example of small-sized 

seamount consists of “petit-spot” volcanoes that form in response to plate flexure close to 

subduction zones [Hirano et al., 2006, 2008; Valentine and Hirano, 2010]. However, it 

remains unconstrained whether these volcanoes are common along subduction zones or occur 

elsewhere on the ocean floor. The morphology of the ocean floor and age patterns of 

intraplate volcanism in the Pacific basin over the last 120 Ma suggest that lithosphere 

cracking is an important process leading to seamount formation [Natland and Winterer, 

2005], but the contribution of this mechanism in the formation of small-sized seamounts 

remains poorly constrained. We present here new data on Lower/Middle Jurassic and Lower 

Cretaceous ocean floor sequences exposed in the Santa Rosa accretionary complex (SRAC, 

[Baumgartner and Denyer, 2006]) in Costa Rica. These sequences allow study of the 

stratigraphy, composition and mode of formation of a small-sized seamount that formed in the 

Jurassic, most probably on the now disappeared Farallon Plate. We outline lithological and 

compositional similarities between the accreted seamount, petit-spot volcanoes and unusual 

lavas of the Line Islands chain, which provide new insight into the formation of small-sized 

seamounts or low-volume intraplate volcanism in the ocean. 

 

2. Geological framework 

The Santa Rosa accretionary complex is the oldest accretionary complex exposed in 

the outer forearc of the Middle American margin, and presents direct access to fragments of 

ancient intraplate oceanic volcanoes [Hauff et al., 2000; Hoernle et al., 2002; Buchs et al., 
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2011]. The SRAC represents an autochthonous basement of the Santa Elena peninsula 

(northern Costa Rica) upon which sits a nappe of serpentinized peridotite emplaced during 

Cenomanian-early Campanian time [Tournon, 1994; Baumgartner and Denyer, 2006]. 

Tectonic windows in the nappe expose lithologically distinct accreted assemblages affected 

by low-grade metamorphic overprinting (Figure 1). A majority of the complex comprises 

alkaline basalt that occurs both as km-thick composite units of massive and pillowed lava 

flows and thinner units in which early-middle Pliensbachian to early Toarcian radiolarites are 

intruded by alkaline basalt sills [Meschede and Frisch, 1994; Tournon, 1994; Baumgartner 

and Denyer, 2006; Hauff et al., 2000; Bandini et al., 2011a]. The successions of alkaline 

basalt have previously been interpreted as an Early Jurassic-Late Cretaceous accreted 

seamount genetically unrelated to other accreted sequences in Central America [Tournon, 

1994; Hauff et al., 2000; Geldmacher et al., 2008]. Most of the accreted seamounts exposed 

in Central America may have formed at the paleo-Galapagos Hotspot [Hoernle et al., 2002], 

but older ages and distinct isotopic composition of seamount sequences in the SRAC clearly 

indicate a different origin for these sequences. We combine here existing data with new field 

observations, geochronological data and petrochemical data to better characterize the 

tectonostratigraphy, composition and origin of unusual ocean floor sequences exposed in the 

SRAC. 

3. Methods 

3.1. Bulk rock analyses 

Major and trace element analyses were performed at the Institute of Mineralogy and 

Geochemistry, University of Lausanne, Switzerland. Selected chips of bulk rock samples 

were powdered with a WC mill. 6 grams of Li-tetraborate were added to 1.2 grams of rock 

powder and fused in a Pt crucible to obtain lithium tetraborate glass beads. Major element 

abundances were determined on the lithium tetraborate glass beads using a Philips PW2400 
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X-ray fluorescence spectrometer. Trace element contents were determined using a laser 

ablation inductively coupled plasma source mass spectrometer (LA-ICP-MS) instrument 

equipped with a 193 nm ArF excimer laser (Lambda Physik, Germany) interfaced to an 

ELAN 6100 DRC quadrupole ICP-MS (Perkin Elmer, Canada). Operating conditions of the 

laser included 170 mJ output energy, 10 Hz repetition rate, and 120 μm ablation pit size. 

Helium was used as cell gas. Dwell time per isotope ranged from 10 to 20 ms; peak hopping 

mode was employed. An SRM 612 glass from NIST was used as an external standard. Three 

ablations per tetraborate glass bead were made to obtain the trace element contents. 

Supplemental information related to lithium tetraborate glasses analysis by LA-ICP-MS as 

used in this study are provided in Buchs et al. [2010]. The major and trace elements and 

sampling coordinates of alkaline sills and massif alkaline basalt are reported in Table S1. 

Major element contents were normalized on volatile free basis before plotting and 

interpretations.  

3.2. Amphibole analyses 

Amphiboles were analyzed using a five spectrometer electron microprobe JEOL JXA-

8200 at the Institute of Mineralogy and Geochemistry, University of Lausanne, Switzerland. 

A 15 keV accelerating potential, 15 nA beam current in spot mode were used. All elements 

were analyzed for 30 s except for K and Na which have been analysed for 15 s. The 

composition of selected analysis of amphibole from the different sills and massive alkaline 

lava are reported in Table S2. 

3.3. 40Ar/39Ar geochronology 

The 40Ar/39Ar analyses were performed at the USGS in Denver, CO. Individual 

fragments of fresh basalt approximately 2 mm3, together with high purity mineral separates of 

amphibole and sanidine standards were irradiated in two irradiations of 10 and 20 mega watt 
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hours, respectively, in the central thimble position of the USGS TRIGA reactor using 

cadmium lining to prevent nucleogenic production of 40Ar. The neutron flux was monitored 

using Fish Canyon Tuff sanidine, applying an age of 28.20 Ma ± 0.08 Ma (Kuiper et al. 2008) 

and isotopic production ratios were determined from irradiated CaF2 and KCl salts. For these 

irradiations, the following production values were measured: (40Ar/39Ar)K = 0;  (36Ar/37Ar)Ca 

= 2.764  x 10-4 ± 2.7 x 10-6; and (39Ar/37Ar)Ca = 6.97 x 10-4 ± 4.4 x10-6.  The irradiated 

samples and standards were loaded into 3 mm wells within a stainless steel planchette 

attached to a fully automated ultra high vacuum extraction line constructed of stainless steel. 

Samples were incrementally degassed and/or fused using a 20W CO2 laser equipped with a 

beam homogenizing lens. The gas was expanded and purified by exposure to a cold finger 

maintained at −140oC and two hot SAES GP50 getters. Following purification the gas was 

expanded into a Mass Analyser Products 215-50 mass spectrometer and argon isotopes were 

measured by peak jumping using an electron multiplier operated in analog mode. Data were 

acquired during 10 cycles and time zero intercepts were determined by best-fit regressions to 

the data.  Ages were calculated from data that were corrected for mass discrimination, blanks, 

radioactive decay subsequent to irradiation, and interfering nucleogenic reactions. The 

40Ar/39Ar step-heating diagrams for whole-rocks and separated-amphiboles analysis are given 

in Table S3.  

4. Results 

4.1. Lithostratigraphy 

The studied sequences crop out in the Santa Rosa tectonic window, where 100 to 300 

m-thick, fault-bounded stacks are composed of alternating Lower Cretaceous trench-fill 

deposits (i.e. material mostly deposited in a trench proximal to a volcanic arc) and 

Lower/Middle Jurassic volcano-sedimentary successions that define eight tectonic units 

(Figures 1 and 2). The accreted sequences are moderately deformed with a roughly 

A
cc

ep
te

d 
A

rti
cl

e



© 2013 American Geophysical Union. All Rights Reserved. 

subvertical dip, north-south strike and top to the east orientation, consistent with an initial 

tectonic arrangement of the complex mostly unaffected by post-accretion tectonics. The base 

of the trench fill deposits includes siliceous-rich radiolarites poor in detritus that grade up-

section into hemipelagic sediment with radiolarian-bearing siliceous mudstone interbedded 

with centimeter-bedded turbidites (Figures 1c and 2e-f). Coarser detrital deposits increase in 

abundance up-section and consist of polymict breccias with abundant fragments of radiolarite 

and basalt (Figures 1c and 2g). These breccias may record mass-wasting on the ocean floor or 

reworking of accreted/subducting sequences. Gradational lithological changes seen in the 

trench-fill deposits are most consistent with progressive shift from an ocean floor from a 

pelagic (detritus-poor) setting into a trench (detritus-rich) environment. 

Accreted volcano-sedimentary successions that are the focus of this study include: an 

unusual ~300 m-thick sequence of ribbon-bedded, weakly-deformed radiolarites intruded by 

numerous basaltic sills; a ~150 m-thick volcanic breccia composed of abundant basalt pebbles 

or possible pillow fragments, minor blocks of folded radiolarite, with a matrix of finer-

grained, altered volcanic fragments, and minor crosscutting basaltic dikes; and a ~100 m-thick 

sequence of basalt flows (Figures 1b-c and 2a-d). The radiolarites have a siliceous 

composition without carbonate or significant amounts of clay, hence suggesting deposition in 

a deep, pelagic environment protected from significant continental input. These observations, 

combined with compositional and age consistency of igneous and sedimentary samples (see 

below), support interpretation as single magmatic suite and seamount. 

4.2. Composition of the basalts 

Petrographic characteristics 

Four sills and one lava flow were sampled for analysis (Table S1). The samples have a 

consistent mineralogy with 2000-200 µm augite, 500-50 µm kearsutite, 500-50 ηm 
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plagioclase, and 500-50 µm Fe-Ti oxides phenocrysts embedded in a finer-grained matrix of 

plagioclase, augite, amphibole, Fe-Ti oxides and glass (Figure 3). Few olivine phenocrysts are 

observed in sample 07-08-03-08. The proportion of phenocrysts varies from ~35 % in alkaline 

sill 07-08-03-08 corresponding to a cumulative texture with abundant augite, to few crystals 

in sample 07-08-03-10. The proportion of glass in the matrix varies from ~40% to ~10% 

among our samples. Apatite is observed as accessory minerals in all samples and forms small 

euhedral crystals and/or acicular quenched crystals included in the glass. Minor calcite is 

observed in vesicles in all samples except basalt POCR07-56, or in micro-veinlets in sample 

POCR07-51. No textural or mineralogical differences were observed between the sills and the 

massive and vesicular basalt POCR07-57. 

Major element characteristics 

Major element contents of Santa Rosa rocks define an alkaline trend controlled by 

moderate degrees of fractionation (MgO=8.96-4.30 wt. %) or mineral accumulation (Figure 

4). Mineral accumulation is particularly important for CaO. The CaO content of alkaline sill 

07-08-03-08 that contains cumulative augite is 15.66 wt. %, whereas sill 07-08-03-10 without 

augite phenocrysts has CaO content of only 6.01 wt.%. The degree of differentiation of the 

rocks is well indicated by MgO and SiO2 contents, but samples with similar MgO content 

have a silica difference of ~3 wt.%. TiO2 content of the sills and massive basalt does not 

show significant variation (3.29-4.07 wt. %) relative to silica or magnesium contents. Alkali 

content (Na2O+K2O) of Santa Rosa alkaline basalts is similar to that observed in other 

alkaline ocean island basalts (OIBs) (Figure 4a). Importantly, some of the Santa Rosa sills are 

characterized by high K2O content and high K2O/Na2O ratio, which are very unusual for 

oceanic lavas (Figure 4c). Optical observation of the thin sections indicate that, although 

phenocrysts are generally well-preserved, alkali content may have been influenced by minor 

alteration of interstitial glass into palagonite or variable alteration of matrix plagioclase 
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among the samples. Possible alteration effects are nonetheless unclear as no correlation 

between the apparent degree of alteration and alkali content was observed. Similarly, loss on 

ignition (LOI) could not be directly related to gain or loss of K2O or Na2O. The samples have 

moderate LOI (between 2.2 and 6.1 wt. %, Table S1), in particular regarding that ~1 wt% of 

the LOI could be related to amphibole breakdown during calcinations. Thus, the use of optical 

observation and chemical composition of bulk rock samples cannot determine if the highly 

variable K2O contents of the Santa Rosa alkaline basalts (from 1.39 to 3.67 wt.%) reflect 

distinct melt compositions or various degrees of alteration. To estimate the content of K2O in 

the initial melt we use below the composition of fresh amphiboles that crystallized as 

phenocrysts in these rocks. 

K2O content based on amphibole composition 

Fresh amphibole phenocrysts from Santa Rosa sills and lava flow (Figure 3) share a 

similar composition, including K2O content (Table S2). An important observation is that 

these amphiboles have high K2O content (1.33 to 1.60 wt.%) compared to that of typical low 

pressure amphiboles in alkaline series for various oceanic islands (average K2O content: 1.06 

± 0.28 wt. %) (Figure 5). Assuming that all amphiboles reported in Figure 5 crystallized at 

low pressure (<4 kbar), this difference suggests that the K2O content of the Santa Rosa melts 

are higher than in typical alkaline series observed in oceanic setting. 

Difficulty in estimating initial K2O in the alkaline liquid based on K content in fresh 

amphiboles relates essentially to the choice of appropriate Kds (Kds=solid/liquid partition 

coefficients). Pilet et al. [2010] reported Kds amph/liq for K measured in various intermediate 

pressure experiments (0.93-1.5 GPa, Figure 6). These Kds vary from ~0.8 to 0.2 as function 

of liquid composition, temperature, and pressure (see Pilet et al. [2010] for a detailed 

discussion about the dependence of Kds on P-T and liquid composition). To correct for the 

effects of liquid composition and crystallization temperature, we used the Mg# - Kd amph/liq K 
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diagram (Figure 6b) and the Mg# measured in amphiboles from Santa Rosa lavas 

(Mg#=100*[Mg/(Mg+Fe)]). This yielded a range of Kd amph/liq K between 0.8 and 0.4. The 

effects of pressure of crystallization on Kd amph/liq K were assessed using the K2O content in 

amphiboles produced during equilibrium crystallization at various pressures and temperatures 

from an initial basanitic liquid [Peter Ulmer, unpublished data] (Figure 7). Figure 7 shows 

that the K2O content in amphiboles (and by extension the Kd amph/liq for K) decreases 

significantly with decreasing crystallization pressure. Petrographic observations of the Santa 

Rosa amphiboles (Figure 3) suggest that they represent phenocrysts and micro-phenocrysts 

formed at low pressure during cooling of alkaline sills or lava flow. Therefore, our previous 

estimated range for Kd amph/liq K (0.8 - 0.4), based on 0.93-1.5 GPa experiments, is partly 

biased. Assuming a lower crystallisation pressure, we can restrict our estimate of Kd amph/liq K 

to 0.4 -0.6 to calculate the K2O content of Santa Rosa basaltic melts from which the 

amphiboles crystallized. The results are reported as ranges of K2O in Figure 4d and show 

good agreement with high K2O content measured in two Santa Rosa alkaline rocks. This 

clearly suggests that pristine composition of the Santa Rosa basalts is characterized by an 

unusual, high K2O content. Consistently high K2O content in amphibole phenocrysts suggests 

that lower K2O values in whole rock composition reflect leaching during secondary alteration. 

Alkaline basalts observed in oceanic islands are characterized by K2O/Na2O ratio of 

~0.4 (K2O/Na2O average of the OIBs reported in Figure 4 is 0.38 ± 0.23 (1σ)) and only few 

analyses indicate values close to those measured in Santa Rosa basalts (Figure 4). To our 

knowledge, consistent observations of potassic alkaline lavas in submarine volcanic rocks are 

essentially restricted to Late Cretaceous submarine volcanism of the Line Islands chain 

[Natland, 1976; Davis et al., 2002] and recent petit-spot volcanoes off Japan [Hirano et al., 

2006]. A similarly high-K lava sample was collected on a Wake seamount [Natland, 1976]. 

Others may occur in Tuamotu and Samoan chains, but data describing these occurrences 
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remain to be published [Natland, pers. com. 2012]. Figure 4 suggests that the Santa Rosa sills 

and lava flow are similar to “petit-spot” lavas in term of major element composition. They are 

slightly richer in total alkalies (Na2O+K2O) and K2O than K-rich alkaline basalts from the 

Line Islands chain, but potential alteration effects on whole rock compositions of both Santa 

Rosa and Line Islands basalts do not allow clear distinction. 

Trace element characteristics 

Santa Rosa sills and lava flow are characterized by high incompatible trace element 

contents (Rb, Ba, U, Th, Nb and LREE) and high La/Yb ratio, with very consistent patterns of 

immobile elements (Nb, Zr, Hf, Th, REE) (Figure 8). Some variations are seen in Figure 8 for 

mobile elements (Rb, Ba, K, Sr) that can be controlled by source or alteration effects, but we 

showed above that some of the high K values and, by extension, the composition of other 

mobile elements, are probably not significantly affected by secondary alteration. Lower 

concentrations of incompatible elements in sill sill 07-08-03-08 relative to other Santa Rosa 

samples relates to the presence of cumulative augite + minor ilmenite, which decreased 

incompatible trace element contents of the whole-rock, except Ti. Trace element patterns of 

the Santa Rosa basalts are broadly similar to those of alkaline rocks observed in oceanic 

islands (Figure 8a). They are clearly distinct from those of off-axis seamounts from the East 

Pacific Rise [Niu and Batiza, 1997] (Figure 8b), which formed on young lithosphere by 

degrees of partial melting higher than those assumed for OIBs [e.g. Reynolds and Langmuir, 

2000]. The high Rb, Ba, K contents observed in Santa Rosa alkaline rocks indicate that these 

samples are distinct from typical OIBs. However, the Santa Rosa sills and lava flow are 

characterized by normalized multielement patterns very similar to those of the most enriched 

lavas from the Line Islands chain seamounts (Figure 8c) [Davis et al., 2002]. Trace element 

contents of moderately fractionated basalts are only distinguished by slightly lower La/Yb 

ratios (i.e. slope of REE) and more variable Rb/Ba and Ba/Th ratios in the Line Islands chain 
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lavas relative to Santa Rosa rocks, which could reflect partly distinct source compositions in 

the two settings. Normalized multielement patterns of the Santa Rosa sills and lava flow are 

also very similar to those of petit-spot lavas, with notably a similar slope of REE and a 

positive Ba anomaly. Basalts from these two localities have slightly distinct Pb and Sr 

contents, possibly indicating minor source differences. In any case, potassic alkaline basalts 

of Santa Rosa, petit-spot volcanoes in Japan and Line Islands chain share similar Rb, Ba, K 

characteristics not seen in typical OIBs. 

4.3. Geochronological and biochronological data 

Amphiboles separated from two basaltic sills yielded 40Ar/39Ar plateau ages of 173.9 

+/- 0.5 and 177.0 +/- 0.8 Ma (2sd).  These amphibole 40Ar/39Ar ages and biochronological 

dating of radiolarites sampled in the volcano substrate and breccias both indicate formation of 

the basaltic rocks at ~175 Ma (Figures 1c, 9, and 10).  A ~110 Ma age of accretion of the 

studied sequences is indicated by radiolarians found in trench-fill deposits juxtaposed with 

volcano-sedimentary sequences (Figures 1c, 2 and 10).  This age is supported by 40Ar-39Ar 

step-heating from three basalts, albeit with complex age spectra (Figures 1c and 9). The 

40Ar/39Ar step heating data from the three whole rock samples likely reflect the combined 

effects of diffusive Ar loss, K-alteration, and internal 39Ar and 37Ar recoil.   The lower laser 

power steps have higher K-values and younger ages that transition to older ages with lower 

K-values at slightly higher laser power and finally yielding ages intermediate between these at 

highest laser powers.  These age patterns and K/Ca evolutions suggest K-alteration is being 

degassed in the low power steps and that effects of Ar recoil are evident throughout the 

degassing of the samples.  Nonetheless, despite the imprecise age information from these 

samples, the majority of the step heating ages are between 100 and 120 Ma, which are similar 

to radiolarian fossil ages from the trench-fill deposits.  Collectively, the radiolarian ages and 

the altered basalt 40Ar/39Ar ages support accretion of these deposits at ~110 Ma.  

A
cc

ep
te

d 
A

rti
cl

e



© 2013 American Geophysical Union. All Rights Reserved. 

5. Discussion 

5.1. Nature and origin of the seamount 

Three lines of evidence indicate that the accreted volcano-sedimentary sequences 

represent a small-sized seamount volcanologically and compositionally similar to petit-spot 

volcanoes found off Japan: 

1) The lithostratigraphic arrangement of units 2 to 7 (Figures 1 and 2) are consistent with 

the occurrence of a small accreted volcanic edifice. Unit 3, which contains thick radiolarite 

deposits with volcanic sills compositionally similar to nearby lava flow, is likely to represent 

the substrate of a small-sized seamount. The radiolarites clearly indicate deposition below the 

Calcite Compensation Depth (CCD). They do not contain reworked shallow-water material or 

any other type of detrital sediment that commonly occur on the flanks of large seamounts or 

in steep submarine environments. Thick packages of siliceous ooze (i.e. the unlithified 

equivalent of the studied radiolarites) can hardly be preserved on top of large seamounts 

because they are commonly swept by oceanic currents. In addition, the accreted volcano is 

included within a well-organized, imbricated tectonic section that contains thin layers of 

trench-fill sediments (Figure 1b-c). This lithologic arrangement is very similar to that of some 

other accretionary complexes, which formed by repeated off-scrapping of the uppermost 

layers of the oceanic crust [Kimura and Ludden, 1995]. The subduction or accretion of large 

seamounts is accompanied by severe disruption of the overlying plate and the formation of 

tectonic mélanges that may locally include blocks of shallow-marine limestone [Okamura, 

1991; Matsuda and Ogawa, 1993]. These do not occur in the SRAC.  

2) The lithologic succession of units 3-5 is very similar to that described in small-sized 

seamounts off Japan [Fujiwara et al., 2007]. Volcanic breccias associated with deformed 

sediments and subvolcanic intrusions in weakly deformed pelagic sediments (Figure 2a-c) are 
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unusual volcanic features but not unexpected in association with small-sized volcanoes 

developing on a thick pelagic sedimentary cover. 

3) The composition of the Santa Rosa sills and lava flow are similar to that of petit-spot 

volcanoes in Japan or surficial volcanic deposits on seamounts of the Line Islands chain 

(Figures 4 and 8c, d), but clearly distinct from that of off-axis seamounts from the East Pacific 

Rise [Niu and Batiza, 1997] (Figure 8b). Although similar to typical alkaline rocks observed 

in oceanic islands, the studied alkaline rocks can be distinguished by higher K2O contents and 

K2O/Na2O ratios (Figure 4c and d). As indicated previously, minor alteration could have 

affected the composition of the Santa Rosa basalts, but the high K2O contents observed in 

amphibole phenocrysts from Santa Rosa compared to that of low pressure amphiboles from 

ocean island alkaline series further supports unusual high K contents (Figure 4d) and 

potentially higher K2O/Na2O ratios of the Santa Rosa alkaline basalt compared to typical 

OIBs. In any case, the formation of the basalts requires very low degrees of partial melting 

(see below) and extrusion of low volumes of lava consistent with the occurrence of an 

accreted small-sized volcano. 

The origin of the seamount can be assessed using time and lithological constraints. 

Although deformation partly affected the SRAC, lithostructural arrangement of accreted 

sequences are relatively well organized, with repeated occurrence of similar lithologies with 

consistent top-to-the-east orientation. This and high consistency of age and geochemical data 

in the volcano-sedimentary sequences and trench-fill deposits indicate that emplacement of 

the seamount sequences is unlikely to have occurred by reworking of previously-accreted 

sequences, but essentially occurred by direct incorporation from the subducting plate. 

Therefore, the ~65 Ma time span between the formation (~175 Ma) [this study] and accretion 

(~110 Ma) [Bandini et al., 2011a] of the accreted small-sized seamount and expected fast 

plate motions in the eastern Pacific during this time interval [Johnston and Borel, 2007; 
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Smith, 2007; van der Meer, 2012] indicate that the volcanic edifice must have travelled a few 

thousand kilometres in the ocean prior to its accretion. In addition, radiolarites from the 

volcano substrate are pure pelagic deposits that lack coarse arc-derived or terrigenous material 

generally observed close to subduction zones or continental margins. Hence, the volcano did 

not form close to a subduction zone. Also, thick pelagic deposits in the volcano substrate and 

the composition of the basalts preclude volcano formation close to a mid-ocean ridge. We 

deduce from preceding observations that the small-sized seamount formed in a mid-ocean 

plate setting. This is an important difference with petit-spot volcanoes found off Japan, which 

indicates that similar seamounts can also form far from subduction zones. 

5.2. Petrogenesis of the seamount 

Although formed at very different times and areas in the ocean, potassic alkaline 

basalts of Santa Rosa, the Line Islands chain and Japanese petit-spot volcanoes share similar 

compositional features, which are very unusual among OIBs and require a particular mode of 

magma genesis. The occurrence of potassic alkaline basalts in the Line Islands chain has been 

compared to continental rift zones, where low-volume magmatism can produce similar lavas 

[Natland, 1976; Davis et al., 2002]. These basalts were emplaced during episodic volcanic 

events along much of the Line Islands chain, and were interpreted to result from 

decompressional melting of heterogeneous mantle due to diffuse lithospheric extension 

[Davis et al., 2002]. Similarly, petit-spot volcanoes are considered to form in response to 

lithosphere cracking close to subduction zones [Hirano et al., 2006]. It was suggested that 

low-volume magmatism associated with these seamounts is linked to small-scale, fertile 

recycled plate material that occurs pervasively in the upper mantle [Machida et al., 2009]. 

Preceding studies provided important contextual and geochemical data on the formation of 

potassic alkaline basalts in the ocean. To provide new insight into the petrogenesis of the 

A
cc

ep
te

d 
A

rti
cl

e



© 2013 American Geophysical Union. All Rights Reserved. 

Santa Rosa basalts (and similar rocks in the ocean) we outline below key petrological aspects 

that have remained poorly used in previous studies.  

 The Santa Rosa, Line Islands and Japanese petit-spot alkaline basalts are 

characterized by high K2O and TiO2 contents. These features cannot be accounted for by 

fractional crystallization process or low degrees of partial melting of a peridotitic source 

representative of the convecting normal MORB mantle. Fractional crystallization of olivine, 

clinopyroxene, and amphibole (i.e. the dominant phases observed in Santa Rosa sills and lava 

flow) cannot increase significantly K2O/Na2O ratio in the residual melt as demonstrated by 

the liquid line of descent determined experimentally at 1.5 GPa for an initial basanitic liquid 

[Pilet et al., 2010]. The study of Pilet et al. [2010] shows that K2O/Na2O remains mostly 

constant for melts evolving during fractional crystallisation of, first, an olivine + 

clinopyroxene assemblage, then an amphibole + clinopyroxene assemblage. Partial melting 

curves calculated assuming primitive mantle source composition indicates that the K2O 

content of these basalts can form by very low degrees of partial melting (<1 %) (Figure 4d), 

but Prytulak and Elliot [2007] showed that the source of Ti-rich rocks needs to be more 

enriched than the primitive mantle to satisfy the TiO2 content of the basalts. In addition, the 

Al2O3 content at given MgO content observed in Santa Rosa and petit-spot lavas (Figure 4b) 

is significantly lower than that produced during partial melting experiments performed 

between 2.5 and 4 GPa from fertile peridotite [Hirose and Kushiro, 1993; Kushiro, 1996; 

Walter, 1998; Davis et al., 2011]. Machida et al. [2009] propose that source enrichment 

including K, Rb, Ba of petit-spot volcanoes reflects melting of recycled material in an 

asthenospheric magma source. Nevertheless, it is not clear if melting of this assemblage can 

satisfactorily lead to the observed Al2O3 content. We propose here an alternate model that 

accounts for the major and trace element contents of the potassic alkaline basalts through a 

two-step process:  
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(1) Peridotite melts are continuously extracted from the low-velocity zone at the base 

of the oceanic lithosphere (in the stability field of garnet) and percolate through the lower 

lithosphere producing metasomatic phlogopite-pyroxenite veins at depth [Lloyd et al., 1975; 

Harte et al., 1993; Niu and O’Hara, 2003]; 

(2) Tectonic stress triggering lithosphere cracking allows melts from the low-velocity 

zone to interact with the phlogopite-pyroxenite veins, re-melt them and mix before reaching 

the surface to produce potassic lavas. The tectonic stress may be related to plate flexure as in 

the case of petit-spot volcanoes in Japan or by diffuse lithospheric extension as proposed for 

seamounts observed in the Line Islands chain. 

Phlogopite is characterized by high K2O and TiO2 content and incorporates Ba and Rb 

preferentially with respect to Th, U or REE. The presence of this mineral in the source of 

potassic lavas has long been postulated in continental settings [Lloyd et al., 1975; Edgar, 

1987; Foley, 1992]. The presence of amphibole in the source of alkaline rocks has been also 

proposed to explain K anomalies in alkaline basalts. Nevertheless, amphiboles observed in 

metasomatized peridotite or in metasomatic veins are characterized by K2O/Na2O ratio < 1 

[Pilet et al., 2008], which is inconsistent with the formation of K-rich basalt via incongruent 

melting of amphibole-bearing peridotite or metasomatic veins. Phlogopite, on the other hand, 

can successfully explain unusual K, Ti, Ba and Rb contents as well as K2O/Na2O ratios 

observed in potassic alkaline basalts in the ocean (Figures 4 and 8). Because phlogopite is not 

stable above ~1200°C, which is the approximate temperature at the base of the lithosphere 

[Konzett and Ulmer, 1999], the occurrence of this mineral restricts its origin to parts of the 

lithosphere rather than in the convecting mantle where temperatures exceed 1200°C. Also, our 

model is supported by the compositional range of major elements of the studied basalts, 

which define a mixing line between low degrees of peridotite melting and experimental melts 

from metasomatic phlogopite-clinopyroxene veins [Lloyd et al., 1985] (Figure 4). As 
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indicated previously, the Al2O3 content of the Santa Rosa and Japanese petit-spot basalts is 

significantly lower than that observed in experimental partial melts from peridotitic sources, 

hence requiring an additional (e.g. metasomatic) component in the source. 

5.3. Formation of the seamount by lithosphere cracking 

The wide range of observations above outlines very consistently the occurrence of an 

accreted small-sized seamount volcanologically and compositionally similar to petit-spot 

volcanoes in Japan. However, lithological and age constraints indicate that the accreted 

edifice is unlikely to have formed close to a subduction zone. Petrological and seismic data 

show that melt may be ubiquitous at the base of the oceanic lithosphere [Kawakatsu et al., 

2009; Ni et al., 2011]. This melt could be collected through lithospheric fractures over large 

areas and trigger low-volume volcanism without need for decompression, convection or 

thermal anomalies in the mantle [Natland and Winterer, 2005; Presnall and Gudfinnsson, 

2011]. Potassic alkaline basalts such as those forming the Santa Rosa seamount or petit-spot 

volcanoes in Japan have been rarely sampled compared to other OIBs. This may be related to 

the difficulty in sampling low volumes of potassic alkaline basalts in the ocean, but the 

occurrence of petit-spot-like volcanoes could be much larger than commonly assumed. 

Interestingly, potassic alkaline basalts have also been reported from the top or flank of larger 

volcanic edifices of the Line Islands chain and Wake seamounts [Natland, 1976; Davis et al., 

2002]. Volcanism at the Line Islands chain has no age progression and occurred during 

several periods over a widespread area [Davis et al., 2002]. Hence, similarly to the formation 

of petit-spot volcanoes due to slab flexure in Japan [Valentine and Hirano, 2010], the 

formation of the chain is considered to be related to lithosphere cracking rather than persistent 

melting anomalies [Davis et al., 2002; Natland and Winterer, 2005]. Our data cannot rule out 

the possibility that the studied seamount formed in response to thermal anomalies in the 

mantle. However, the unusual composition of the Santa Rosa basalts and their similarity to 
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petit-spot and Line Islands lavas suggest that they formed in response to similar processes of 

lithosphere cracking. This interpretation is in good agreement with petrological constraints 

showing that potassic alkaline basalts can form in response to mixing of low degree partial 

melts of a garnet peridotite in the upper asthenosphere with metasomatic veins at the base of 

the lithosphere (i.e. a process viable in the ocean without abnormally-high thermal gradients 

in the uppermost mantle). 

Placing the Early/Middle Jurassic accreted seamount of Santa Rosa in its original 

context of formation is limited by poor preservation of Jurassic ocean crust and difficulties in 

reconstructing tectonic development of the Pacific basin in the early Mesozoic. Clues about 

this development come from circum-Pacific terranes and tomographic anomalies in the sub-

Pacific mantle, which indicate that several volcanic arcs transited across the basin and, 

notably, accreted on its western side [Nokleberg et al., 2000; Smith, 2007; Bandini et al., 

2011b; van der Meer, 2012]. Upper Paleozoic seamounts are preserved in the Canadian 

cordillera, which accreted at ~230 Ma along an intra-oceanic volcanic arc and were 

subsequently emplaced along North America during arc-continent collision at ~180 Ma 

[Johnston and Borel, 2007]. Tethyan fauna associated with the seamounts show that these 

volcanic edifices were able to cross over the entire Panthalassa, with successive 

emplacements along intra-oceanic and continental convergent plate boundaries (i.e., seamount 

accretion and arc-continent collision). In this context it remains unclear where the Santa Rosa 

seamount accreted and how it was driven to its present location. However, our data clearly 

show that its formation was distant from volcanic arcs and mid-ocean ridges. In addition, 

formation of the seamount at ~175 Ma is coeval with major plate reorganization in the Pacific 

basin. Bartolini and Larson [2001] estimated that formation of the Pacific plate related to 

break-up of the Izanagi, Farallon and Phenix plates initiated at 175-170 Ma. They proposed 

that this plate re-organisation was triggered by the break-up of Pangea, opening of the 
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Atlantic, and increased subduction rates on the western side of the Pacific basin. Changes of 

subduction patterns have also been proposed by Natland and Winterer [2005] to exert a strong 

control on plate tectonics, which may have notably allowed lithosphere cracking and 

formation of some of the linear volcanic chains seen in the recent Pacific basin. In an 

alternative interpretation, incipient formation of the Pacific plate during the Middle/Late 

Jurassic was primarily caused by deep-seated, mantle processes [Pavoni, 2003]. In any case, it 

is clear that significant re-distribution of stress in the lithosphere accompanied the break-up of 

the Izanagi, Farallon and Phoenix plates. We hypothesize therefore that this event was 

associated with lithosphere cracking across the now-disappeared Farallon Plate, which led to 

low-volume intraplate volcanism and formation of the studied seamount. 

6. Summary and conclusions 

The Santa Rosa Accretionary Complex includes a small-sized seamount formed in the 

Middle/Late Jurassic (~175 Ma) on a now-disappeared plate segment of the Pacific basin, 

which accreted in the Early Cretaceous (~110 Ma) along an unknown convergent plate 

boundary. Potassic alkaline basalts found in the seamount are very uncommon in the ocean 

and have previously been reported from petit-spot volcanoes off Japan, surficial deposits on 

seamounts of the Line Islands chain and one occurrence at the Wake seamounts. In Japan and 

along the Line Islands chain, emplacement of the basalts is clearly associated with lithosphere 

cracking. Similarly, petrogenetic constraints show that the Santa Rosa potassic alkaline 

basalts (and similar rocks in the ocean) can form by percolation of melts pre-existing at the 

base of the lithosphere in the low-velocity zone. These melts interact on their way to the 

surface with metasomatic veins previously formed in the lower lithosphere, and allow 

formation of small-sized seamounts or emplacement of small volumes of lavas/sills on larger 

seamounts. The Santa Rosa seamount closely resembles petit-spot volcanoes in Japan, but its 

formation in an intraplate setting suggests that small-sized seamounts similar to petit-spot 
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volcanoes can also occur disconnected from subduction zones. Petrological and contextual 

constraints on the origin of potassic alkaline basalts combined with formation of the Santa 

Rosa seamount coeval with incipient formation of the Pacific plate at ~175-170 Ma suggest 

that the formation of the seamount occurred in response to lithosphere cracking during major 

re-organisation of plate tectonics in the Pacific basin. Growing number of potassic alkaline 

basalts observed in seamount settings suggests that they may represent a common, yet poorly 

known expression of low-volume intraplate volcanism in the ocean.  
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Figure 1. Geological framework of the Santa Rosa accretionary complex. (a) Geological map 

of the Santa Elena peninsula. (b) Geological sketch map of the Santa Rosa accretionary 

complex with location of pictures shown in Figure 2. (c) Idealized cross-section showing 

studied lithologic assemblages, with location of analyzed basalts and samples that constrain 

the age of formation of the units (blue = Middle/Late Jurassic, green = Early Cretaceous, 

black = undefined formation age). 
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Figure 2. Lithologic assemblages of the Santa Rosa Accretionary Complex (locations on 

Figure 1b). (a-d) petit-spot volcano sequences. (e-f) trench-fill deposits. 
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Figure 3. Photomicrographs of a Santa Rosa sill (07-08-03-08) and lava flow (POCR-07-57). 

(a, c) plane polarized light. (b, d) with crossed polars. (a-d) Note the porphyric texture of 

Santa Rosa basalts and the different degrees of alteration in the matrix. These rocks are 

characterized by large phenocrysts of augite (500-2000 μm in size) associated with amphibole 

and Fe-Ti oxides micro-phenocrysts (500- 50 μm  in size), which are embedded in a finer-

grained matrix of plagioclase, augite, amphibole, Fe-Ti oxides, apatite and glass. The 

phenocrysts and microphenocrysts are unaltered, but the glass show evidence of 

palagonitization. The main differences between the two displayed samples are the degree of 

alteration of the plagioclase in the matrix and larger amounts of cumulative augite in the sill. 
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Figure 4. Major oxides content and ratio for Santa Rosa sills and associated lava flows 

compared to ocean island basalts (OIBs, GeoRoc database) and experimental melts from 

peridotite produced at pressure between 2.5 and 4 GPa [Hirose and Kushiro, 1993; Kushiro, 

1996; Walter, 1998; Davis et al., 2011], and from phlogopite-clinopyroxenite at 2 and 3 GPa 

[Lloyd et al., 1985]. (a)  SiO2 vs Na2O + K2O. (b) MgO vs Al2O3. (c) SiO2 vs K2O/Na2O. 

(d) TiO2 vs K2O. (a-d) the green arrow represents potential mixing between melts from 

peridotite and phlogopite clinopyroxenite. see the main text for the detail of calculation of the 

K contents in equilibrium with amphibole phenocrysts from Santa Rosa lava reported in panel 

(d), and Supplemental Data for the detail of calculation related to the batch melting curve for 

K2O and TiO2. Data from Davis et al. (2011) are reported only in panel b regarding that K 

content in their experiments are fixed to 1 wt. %. 
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Figure 5. Mg# versus K2O content in amphibole phenocrysts from Santa Rosa alkaline rocks 

compared with amphibole phenocrysts crystallizing in alkaline rocks from various oceanic 

islands. The amphiboles from Santa Rosa lavas and sills show higher K2O for a given Mg# 

than the amphiboles from typical oceanic alkaline series suggesting crystallisation in a 

slightly more K-rich liquid than observed in typical oceanic islands. Sole exception consists 

of amphiboles from Ua Pou Island (Marquesas, French Polynesia), which show slightly 

higher K content than those observed in amphiboles from Santa Rosa. Nevertheless, the Uo 

Pou tephri-phonolites and phonolites from which the amphiboles have crystallized are rich in 

K (K2O > 5 wt.%) with K2O/Na2O ratios close to 1. In addition, the formation of these rocks 

is not interpreted as resulting from fractional crystallization of a primary alkaline basaltic 

liquid but reflects the partial melting at depth of basanites [Legendre et al., 2005]. Amphibole 

data from oceanic islands are selected from the GeoRoc database. 
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Figure 6. Variation of Kd amphibole/liq for K2O versus (a) experimental temperature and (b) 

Mg# in amphibole in various fractional (FC) and equilibrium crystallization experiments. 

Data points represent: FC experiments of an initial nepheline-normative basanite at 1.5 GPa 

(filled black circles; Pilet et al. [2010]); a hypersthene-normative hawaiite at 0.93 GPa (open 

black diamonds; Nekvasil et al. [2004]), and a hypersthene-normative picrobasalt at 1.5 GPa 

(filled black squares; Alonso-Perez et al. submitted) and 1.0 GPa (open black squares; Kägi 

[2000]). Amphiboles from equilibrium crystallization experiments are taken from Tiepolo et 

al. [2000] at 1.5 GPa (filled grey circles) and are shown for comparison. 
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Figure 7. Variation of K2O content in amphiboles as function of crystallization temperature 

and pressure observed in equilibrium experiments from an initial basanitic liquid [Peter 

Ulmer, unpublished data]. 0.2 – 0.4 GPa experiments have been performed in an internally 

heated pressure vessel (Clermont- Ferrand) using Ag75Pd25 capsules providing a fO2 ≥ 

NNO. The 0.5 – 3.0 GPa Piston-cylinder experiments have been performed at ETH Zurich 

using graphite-Pt double capsules (fO2 ≈ FMQ -1 to -3). The composition of the nepheline 

normative hydrous-basanitic starting material is typical of basanite observed in oceanic or 

continental setting with a K2O content of 0.93 wt. %. 
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Figure 8. PM-normalized trace element patterns of Santa Rosa basalts. (a) Comparison with 

ocean island basalts (OIBs, GeoRoc database, 752 samples with SiO2=42-48 wt % and 

MgO=6-5 wt %). (b) Comparison with East Pacific Rise off-axis seamounts [Niu and Batiza, 

1997]. (c) Comparison with Line Islands seamounts [Davis et al., 2002]. Only the Line 

Islands rocks characterized by LOI below 4 wt.%, MgO content between 4 and 6.5 wt. %, and 

P2O5 content lower that 2 wt. % are reported. Only Santa Rosa sills with MgO content 

between 4 and 6.5 wt. % are shown for comparison. (d) Comparison with petit-spot lavas 

from Japan [Hirano et al., 2006]. 
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Figure 9. 40Ar-39Ar step-heating diagrams. Complete data are given in Table S3. 
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Figure 10. Late Early Jurassic and late Early Cretaceous Radiolaria (biochronologic range of 
each species indicated where known) from the Santa Rosa Accretionary Complex. 1-5) 
Sample CR-SE19, early-middle Pliensbachian, from a radiolarite block in unit 4. 1) 
Canoptum columbiaense WHALEN and CARTER (latest Sinemurian – Pliensbachian) . 2) 
Cyclastrum asuncionense WHALEN and CARTER (early-middle Pliensbachian). 3) 
Canoptum dixoni PESSAGNO and WHALEN (latest Sinemurian – Pliensbachian). 4) 
Paleosaturnalis tetraradiatus KOZUR and MOSTLER (latest Sinemurian – middle 
Pliensbachian). Sample POB96-14. 5) Katroma bicornis DE WEVER (Pliensbachian-early 
Toarcian). 6-10) Samples POB96-15, early Toarcian, from ribbon cherts interbedded with 
alkaline basalt sills of unit 3. 6) Parahsuum ovale HORI and YAO (latest Sinemurian – 
Toarcian). 7) Katroma bicornis DE WEVER (Pliensbachian – early Toarcian). 8) 
Eucyrtidiellum disparile gr. NAGAI and MIZUTANI (Toarcian – Bajocian). 9)  
Praeconocaryomma bajaensis WHALEN (Pliensbachian – Aalenian). 10) Parasaturnalis 
diplocyclis (YAO)  (Pliensbachian – early Bajocian). 11-19) Early-middle Albian samples 
from continuous radiolarite-trench fill section in unit 7. 11-12) Sample CRSE18.10.11) 
Pseudodictyomitra pseudomacrocephala (SQUINABOL) (early Albian – early Turonian). 12) 
Pseudodictyomitra pentacolaensis (PESSAGNO) late Aptian – Coniacian). 13, 15-18) 
Sample CR-SE18.45. 13) Pseudodictyomitra sp. aff. P.nakasekoi TAKETANI. 14) (sample 
CR-SE18.25) Pseudodictyomitra sp. 15) Pseudodictyomitra paronai (ALIEV) (early Albian – 
early Cenomanian). 16) Orbiculiforma railensis PESSAGNO. 17) Thanarla brouweri (TAN) 
(latest Barremian – middle Albian). 18) Diacanthocapsa fossilis (SQUINABOL) (late Aptian 
– middle Cenomanian). 
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