2,108 research outputs found

    87th Annual Georgia Public Health Association Meeting & Conference Report

    Get PDF
    The 87th Annual Meeting of the Georgia Public Health Association (GPHA) was held in Atlanta, Georgia, on March 22-23, 2016, with pre-conference (March 21st) and post-conference (March 23rd) Executive Board meetings. As Georgia’s leading forum for public health researchers, practitioners, and students, the annual meeting of the GPHA brings together participants from across the state to explore recent developments in the field and to exchange techniques, tools, and experiences. In recent years the venue for the GPHA annual conference has been Atlanta, with the 2017 GPHA Annual Meeting and Conference also scheduled to be held in Atlanta. Several new initiatives were highlighted as part of this year’s conference. These included three pre-conference workshops, expansion of academic sponsorships, an enhanced exhibit hall integrated with the poster sessions, silent auction, breaks and President’s Reception, an information booth, and an inaugural administration section track. The 2016 Annual Meeting & Conference added the Certified in Public Health (CPH) Continuing Education (CE) designation. The theme for the conference was Understanding Public Health: Research, Evidence and Practice, which reflects the science of public health

    Fingerprinting Fitolítico de Fitofisionomias Florestadas do Bioma Mata Atlântica

    Get PDF
    A interpretação de dados paleoambientais tem sido realizada por meio de comparações com ecossistemas atuais. Na tentativa de reconstituição e entendimento das condições (paleo)ambientais vários proxies têm sido empregados, como os fitólitos (microcorpúsculos de sílica amorfa produzidos por plantas), pois podem ser incorporados aos solos e permanecerem por longos períodos, formando a assinatura fitolítica (fingerprinting) da vegetação que ali se desenvolveu. Este trabalho apresenta os resultados de um estudo que visou comparar a assembleia fitolítica preservada nos primeiros centímetros de solos de três fitofisionomias florestadas do Bioma Mata Atlântica: Ombrófila Alto-Montana, Estacional Semidecidual e Mata de Restinga e definir o seu fingerprinting. Observou-se bom nível de produção e preservação de fitólitos no solo, reforçando a importância deste proxy. Foram identificados e classificados 31 morfotipos. O fingerprinting das fitofisionomias se caracterizou a partir das assembleias preservada nos primeiros centímetros do solo (0-5 cm), marcando o predomínio de plantas Eudicotiledôneas

    Status of Exosphaeroma amplicauda (Stimpson, 1857), E-aphrodita (Boone, 1923) and description of three new species (Crustacea, Isopoda, Sphaeromatidae) from the north-eastern Pacific

    Get PDF
    Exosphaeroma amplicauda (Stimpson, 1857) from the west coast of North America is reviewed and redescribed and revealed to be a group of closely related species. A neotype is designated and the species redescribed based on the neotype and topotypic specimens. Exosphaeroma amplicauda is known only from the coast of California, at Marin, Sonoma and San Mateo Counties. E. aphrodita (Boone, 1923), type locality La Jolla, California and previously considered nomen dubium is taken out of synonymy and re-validated. A further three species: E. paydenae sp. n., E. russellhansoni sp. n., and E. pentcheffi sp. n. are described herein. Sphaeroma octonctum Richardson, 1899 is placed into junior synonymy with Exosphaeroma amplicauda. A key to the Pacific West Coast Exosphaeroma is provided

    Mechanical robustness of Pseudomonas aeruginosa biofilms

    Get PDF
    Biofilms grow on various surfaces and in many different environments, a phenomenon that constitutes major problems in industry and medicine. Despite their importance little is known about the viscoelastic properties of biofilms and how these depend on the chemical microenvironment. Here, we find that the mechanical properties of Pseudomonas aeruginosa (P.a.) biofilms are highly robust towards chemical perturbations. Specifically, we observe that P.a. biofilms are able to fully regain their initial stiffness after yielding is enforced, even in the presence of chemicals. Moreover, only trivalent ions and citric acid significantly affect the biofilm elasticity, the first of which also alters the texture of the material. Finally, our results indicate that biofilm mechanics and bacteria viability inside the biofilm are not necessarily linked which suggests that targeting bacteria alone might not be sufficient for biofilm removal strategies.National Institute of Mental Health (U.S.) (P50-GM068763)National Institute of Mental Health (U.S.) (P30-ES002109)German Academic Exchange Service (DAAD

    Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes

    Get PDF
    Carnivory in plants is an adaptation strategy to nutrient-poor environments and soils. Carnivorous plants obtain some additional mineral nutrients by trapping and digesting prey; the genus Nepenthes is helped by its specialized pitcher traps. To make the nutrients available, the caught prey needs to be digested, a process that requires the concerted activity of several hydrolytic enzymes. To identify and investigate the various enzymes involved in this process, fluid from Nepenthes traps has been analysed in detail. In this study, a novel type of Nepenthes endochitinase was identified in the digestion fluid of closed pitchers. The encoding endochitinase genes have been cloned from eight different Nepenthes species. Among these, the deduced amino acid sequence similarity was at least 94.9%. The corresponding cDNA from N. rafflesiana was heterologously expressed, and the purified protein, NrChit1, was biochemically characterized. The enzyme, classified as a class III acid endochitinase belonging to family 18 of the glycoside hydrolases, is secreted into the pitcher fluid very probably due to the presence of an N-terminal signal peptide. Transcriptome analyses using real-time PCR indicated that the presence of prey in the pitcher up-regulates the endochitinase gene not only in the glands, which are responsible for enzyme secretion, but at an even higher level, in the glands’ surrounding tissue. These results suggest that in the pitchers’ tissues, the endochitinase as well as other proteins from the pitcher fluid might fulfil a different, primary function as pathogenesis-related proteins

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    miR-17–92 cluster: ups and downs in cancer and aging

    Get PDF
    The miR-17–92 cluster encoding 6 single mature miRNAs was identified a couple of years ago to contain the first oncogenic miRNAs. Now, one of these 6 miRNAs, miR-19 has been identified as the key responsible for this oncogenic activity. This in turn reduces PTEN levels and in consequence activates the AKT/mTOR pathway that is also prominently involved in modulation of organismal life spans. In contrast, miR-19 and other members of the miR-17–92 cluster are found to be commonly downregulated in several human replicative and organismal aging models. Taken together, these findings suggest that miR-19 and the other members of the miR-17–92 cluster might be important regulators on the cross-roads between aging and cancer. Therefore, we here briefly summarize how this cluster is transcriptionally regulated, which target mRNAs have been confirmed so far and how this might be linked to modulation of organismal life-spans
    corecore