1,128 research outputs found
Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares
The extreme ultraviolet portion of the solar spectrum contains a wealth of
diagnostic tools for probing the lower solar atmosphere in response to an
injection of energy, particularly during the impulsive phase of solar flares.
These include temperature and density sensitive line ratios, Doppler shifted
emission lines and nonthermal broadening, abundance measurements, differential
emission measure profiles, and continuum temperatures and energetics, among
others. In this paper I shall review some of the advances made in recent years
using these techniques, focusing primarily on studies that have utilized data
from Hinode/EIS and SDO/EVE, while also providing some historical background
and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the
Topical Issue on Solar and Stellar Flare
Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with Flavor Symmetry
We study the renormalization group running of the tri-bimaximal mixing
predicted by the two typical flavor models at leading order. Although the
textures of the mass matrices are completely different, the evolution of
neutrino mass and mixing parameters is found to display approximately the same
pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum
corrections to both atmospheric and reactor neutrino mixing angles are so small
that they can be neglected. The evolution of the solar mixing angle
depends on and neutrino mass spectrum, the deviation
from its tri-bimaximal value could be large. Taking into account the
renormalization group running effect, the neutrino spectrum is constrained by
experimental data on in addition to the self-consistency
conditions of the models, and the inverted hierarchy spectrum is disfavored for
large . The evolution of light-neutrino masses is approximately
described by a common scaling factor.Comment: 23 pages, 6figure
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
About Bianchi I with VSL
In this paper we study how to attack, through different techniques, a perfect
fluid Bianchi I model with variable G,c and Lambda, but taking into account the
effects of a -variable into the curvature tensor. We study the model under
the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a
particular symmetry, self-similarity (SS), matter collineations (MC) and
kinematical self-similarity (KSS). We compare both tactics since they are quite
similar (symmetry principles). We arrive to the conclusion that the LM is too
restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS
approaches bring us to obtain all the quantities depending on \int c(t)dt.
Therefore, in order to study their behavior we impose some physical
restrictions like for example the condition q<0 (accelerating universe). In
this way we find that is a growing time function and Lambda is a decreasing
time function whose sing depends on the equation of state, w, while the
exponents of the scale factor must satisfy the conditions
and
, i.e. for all equation of state relaxing in this way the
Kasner conditions. The behavior of depends on two parameters, the equation
of state and a parameter that controls the behavior of
therefore may be growing or decreasing.We also show that through
the Lie method, there is no difference between to study the field equations
under the assumption of a var affecting to the curvature tensor which the
other one where it is not considered such effects.Nevertheless, it is essential
to consider such effects in the cases studied under the SS, MC, and KSS
hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space
Scienc
Demonstration of a novel technique to measure two-photon exchange effects in elastic scattering
The discrepancy between proton electromagnetic form factors extracted using
unpolarized and polarized scattering data is believed to be a consequence of
two-photon exchange (TPE) effects. However, the calculations of TPE corrections
have significant model dependence, and there is limited direct experimental
evidence for such corrections. We present the results of a new experimental
technique for making direct comparisons, which has the potential to
make precise measurements over a broad range in and scattering angles. We
use the Jefferson Lab electron beam and the Hall B photon tagger to generate a
clean but untagged photon beam. The photon beam impinges on a converter foil to
generate a mixed beam of electrons, positrons, and photons. A chicane is used
to separate and recombine the electron and positron beams while the photon beam
is stopped by a photon blocker. This provides a combined electron and positron
beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen
target. The large acceptance CLAS detector is used to identify and reconstruct
elastic scattering events, determining both the initial lepton energy and the
sign of the scattered lepton. The data were collected in two days with a
primary electron beam energy of only 3.3 GeV, limiting the data from this run
to smaller values of and scattering angle. Nonetheless, this measurement
yields a data sample for with statistics comparable to those of the
best previous measurements. We have shown that we can cleanly identify elastic
scattering events and correct for the difference in acceptance for electron and
positron scattering. The final ratio of positron to electron scattering:
for GeV and
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Treatment of a forelimb fracture and rehabilitation of a free-ranging Iberian Wolf (Canis lupus signatus)
Abstract: The surgical treatment of an exposed compounded comminuted fracture of the right radius and ulna in a free-ranging adult female Iberian Wolf (Canis lupus signatus) with an osteosynthesis plate and screws and subsequent post-operative care are described. The evolution of the fracture healing was very similar to those expected in a dog of the same size. The prompt surgical intervention and a proper housing, feeding and wound management adapted to a free-ranging wolf, in view to reduce manipulation and post-operative complications, allowed the subsequent rehabilitation and release of the animal. After 10th post-operative weeks the wolf was fitted with a Global Positioning System (GPS) for wildlife tracking collar and released in the same area where it has been caught. GPS telemetry data showed that the animal covered increasingly large distances confirming a complete functionality of the right thoracic limb and its successfully return to the wild. This report could constitute the first detailed report of a long bone fracture treatment in a free-ranging wolf and its successfully rehabilitation, release and adaptation to the wild
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
Cofactorization on Graphics Processing Units
We show how the cofactorization step, a compute-intensive part of the relation collection phase of the number field sieve (NFS), can be farmed out to a graphics processing unit. Our implementation on a GTX 580 GPU, which is integrated with a state-of-the-art NFS implementation, can serve as a cryptanalytic co-processor for several Intel i7-3770K quad-core CPUs simultaneously. This allows those processors to focus on the memory-intensive sieving and results in more useful NFS-relations found in less time
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
- …