78 research outputs found

    Gene expression analysis indicates extensive genotype-specific crosstalk between the conjugative F-plasmid and the E. coli chromosome

    Get PDF
    BACKGROUND: Plasmids are an important component of the bacterial genome, but the crosstalk between genes encoded on the chromosome and on the plasmid is still poorly understood. RESULTS: We performed a large-scale survey for genes on the E. coli chromosome that are affected by the presence of the conjugative F-plasmid (crosstalk). The expression pattern of about 4% (107 genes) of the genes encoded by the chromosome was affected by the presence of the F-plasmid. Comparing two different Escherichia coli strains, MG1655 and DH5α, we found a strong host genotype-specific crosstalk of the host chromosome with the F-plasmid. About 88% of the genes affected by the presence of the F-plasmid showed a significant plasmid by host genotype interaction, i.e. the presence of the F-plasmid resulted in a different gene expression in the two host genotypes. Less than 12% of the genes showed an additive effect of gene expression, i.e. host genotype independent crosstalk between plasmid and host chromosome. CONCLUSION: We propose that epistatic effects also contribute to the maintenance of F-plasmids in natural populations

    Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons

    Get PDF
    Oligonucleotide microarrays are an informative tool to elucidate gene regulatory networks. In order for gene expression levels to be comparable across microarrays, normalization procedures have to be invoked. A large number of methods have been described to correct for systematic biases in microarray experiments. The performance of these methods has been tested only to a limited extend. Here, we evaluate two different types of microarray analyses: (i) the same gene in replicate samples and (ii) different, but co-expressed genes in the same sample. The reliability of the latter analysis needs to be determined for the analysis of regulatory networks and our report is the first attempt to evaluate for the accuracy of different microarray normalization methods in this respect. Consistent with previous results we observed a large effect of the normalization method on the outcome of the expression analyses. Our analyses indicate that different normalization methods should be performed depending on whether a study is aiming to detect differential gene expression between independent samples or whether co-expressed genes should be identified. We make recommendations about the most appropriate method to use

    A microsatellite-based multilocus phylogeny of the Drosophila melanogaster species complex

    Get PDF
    AbstractUncovering the genealogy of closely related species remains a major challenge for phylogenetic reconstruction. It is unlikely that the phylogeny of a single gene will represent the phylogeny of a species as a whole [1], but DNA sequence data across a large number of loci can be combined in order to obtain a consensus tree [2]. Long sequences are needed, however, to minimize the effect of (infrequent) base substitutions, and sufficient individuals must be sequenced per species to account for intraspecific polymorphisms, an overwhelming task using current DNA sequencing technology. By contrast, microsatellites are easy to type [3], allowing the analysis of many loci in multiple individuals. Despite their successful use in mapping [4,5], behavioural ecology [6] and population genetics [7], their usefulness for the phylogenetic reconstruction of closely related taxa has never been demonstrated, even though microsatellites are often conserved across species [8–10]. One drawback to microsatellite use is their high mutation rate (10−4–10−2), combined with an incomplete understanding of their mutation patterns. Many microsatellites are available for Drosophila melanogaster, and they are distributed throughout the genome [11]. Most can be amplified in the D. melanogaster species complex [12,13] and have low mutation rates [14,15]. We show that microsatellite-specific distance measurements [16] correlate with other multilocus distances, such as those obtained from DNA–DNA hybridization data. Thus microsatellites may provide an ideal tool for building multilocus phylogenies. Our phylogenetic reconstruction of the D. melanogaster complex provides strong evidence that D. sechellia arose first, followed by a split between D. simulans and D. mauritiana

    The House Mouse \u3ci\u3eMus musculus\u3c/i\u3e in Mongolia: Taxonomy, Status, and Ecology of a Neglected Species

    Get PDF
    Although the house mouse as a common and widely distributed species is probably best-studied among small mammals, there is a lack of fundamental knowledge regarding species identity, morphology and ecology in Mongolia. Consequently, this study provides results of basic biological research on the Mongolian house mouse. A total of 172 specimens have been studied based on samples collected during the period 1962 to 2016. Using genetic and morphological markers, the taxonomic examination resulted in classification as Mus musculus musculus LINNAEUS, 1758. To characterize the Mongolian house mouse, three fur color traits and 23 metric body and skull traits were analyzed. Two obviously different morphotypes were identified: (1) light individuals with a distinct demarcation line, which occur in most parts of the country, (2) dark individuals with a diffuse demarcation line, which are mainly found in the northern part of the Selenge province. Furthermore, these morphotypes differ in five metric body and skull traits. In general, Mongolian house mice seem to be consistent with reference specimens from Eastern Europe according to metric traits, although exhibiting a shorter tail. In Mongolia Mus musculus lives hemisynanthropically. Habitat preferences are human settlements, but also in natural habitats such as oases, dunes and lakeshores. The population epigenetic analysis by using nonmetric cranial traits exposed three main populations: northcentral, southeast, and west. The latter seems to be more isolated from the other populations, probably due to the Altai Mountains as a natural barrier. The resulting epigenetic distances of the Mongolian house mice are rather low in comparison to other rodents, which indicates that house mice are quite talented in terms of dispersal. The western, southern, and eastern populations show lower values of fluctuating asymmetry (6.5 to 9.0 %), than the northern and central populations (11.5 to 13.1 %). Therefore, the latter seems to be more influenced by environmental or genetic stress factors

    A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior

    Get PDF
    Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby identified a approximately 475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390-30,651,226 Mb; mouse genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression QTL for Glo1 (LOD>30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes. Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs.These studies were funded by MH070933, MH79103 and MH020065

    Using the <i>Mus musculus</i> hybrid zone to assess covariation and genetic architecture of limb bone lengths

    Get PDF
    Two subspecies of the house mouse, Mus musculus domesticus and Mus musculus musculus, meet in a narrow contact zone across Europe. Mice in the hybrid zone are highly admixed, representing the full range of mixed ancestry from the two subspecies. Given the distinct morphologies of these subspecies, these natural hybrids can be used for genomewide association mapping at sufficiently high resolution to directly infer candidate genes. We focus here on limb bone length differences, which is of special interest for understanding the evolution of developmentally correlated traits. We used 172 first-generation descendants of wild-caught mice from the hybrid zone to measure the length of stylopod (humerus/femur), zeugopod (ulna/tibia) and autopod (metacarpal/metatarsal) elements in skeletal CT scans. We find phenotypic covariation between limb elements in the hybrids similar to patterns previously described in Mus musculus domesticus inbred strains, suggesting that the hybrid genotypes do not influence the covariation pattern in a major way. Mapping was performed using 143,592 SNPs and identified several genomic regions associated with length differences in each bone. Bone length was found to be highly polygenic. None of the candidate regions include the canonical genes known to control embryonic limb development. Instead, we are able to identify candidate genes with known roles in osteoblast differentiation and bone structure determination, as well as recently evolved genes of, as yet, unknown function. © 2018 John Wiley Sons Ltd

    Genomic resources for wild populations of the house mouse, Mus musculus and its close relative Mus spretus

    Get PDF
    WOS: 000390231600001PubMed ID: 27622383Wild populations of the house mouse (Mus musculus) represent the raw genetic material for the classical inbred strains in biomedical research and are a major model system for evolutionary biology. We provide whole genome sequencing data of individuals representing natural populations of M. m. domesticus (24 individuals from 3 populations), M. m. helgolandicus (3 individuals), M. m. musculus (22 individuals from 3 populations) and M. spretus (8 individuals from one population). We use a single pipeline to map and call variants for these individuals and also include 10 additional individuals of M. m. castaneus for which genomic data are publically available. In addition, RNAseq data were obtained from 10 tissues of up to eight adult individuals from each of the three M. m. domesticus populations for which genomic data were collected. Data and analyses are presented via tracks viewable in the UCSC or IGV genome browsers. We also provide information on available outbred stocks and instructions on how to keep them in the laboratory.Max-Planck Society; DFG [HA 3139/4-1]; ERC [322564]; contract-research-project for the Bundeswehr Medical Service [M/SABX/005]This work was mostly financed by institutional resources of the Max-Planck Society, a DFG grant to B.H. and M.T. (HA 3139/4-1) and an ERC grant to D.T. (NewGenes, 322564). We thank Sonja Ihle, Susanne Krochter, Ruth Rottscheidt for contributing to collecting animals in the wild and our animal care takers for active involvement of optimizing the scheme for wild mouse keeping. The initial analysis of mice from Afghanistan was funded by contract-research-project for the Bundeswehr Medical Service M/SABX/005. We thank Bastian Pfeifer for help with software package PopGenome, Leslie Turner for discussion and Daniel M. Hooper and Trevor Price for helpful comments on the manuscript. D.T. had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis

    Evidence for Pervasive Adaptive Protein Evolution in Wild Mice

    Get PDF
    The relative contributions of neutral and adaptive substitutions to molecular evolution has been one of the most controversial issues in evolutionary biology for more than 40 years. The analysis of within-species nucleotide polymorphism and between-species divergence data supports a widespread role for adaptive protein evolution in certain taxa. For example, estimates of the proportion of adaptive amino acid substitutions (alpha) are 50% or more in enteric bacteria and Drosophila. In contrast, recent estimates of alpha for hominids have been at most 13%. Here, we estimate alpha for protein sequences of murid rodents based on nucleotide polymorphism data from multiple genes in a population of the house mouse subspecies Mus musculus castaneus, which inhabits the ancestral range of the Mus species complex and nucleotide divergence between M. m. castaneus and M. famulus or the rat. We estimate that 57% of amino acid substitutions in murids have been driven by positive selection. Hominids, therefore, are exceptional in having low apparent levels of adaptive protein evolution. The high frequency of adaptive amino acid substitutions in wild mice is consistent with their large effective population size, leading to effective natural selection at the molecular level. Effective natural selection also manifests itself as a paucity of effectively neutral nonsynonymous mutations in M. m. castaneus compared to humans

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore