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ABSTRACT 15 

Two subspecies of the house mouse, Mus musculus domesticus and Mus musculus musculus, meet in a narrow 

contact zone across Europe. Mice in the hybrid zone are highly admixed, representing the full range of mixed 

ancestry from the two subspecies. Given the distinct morphologies of these subspecies, these natural hybrids can 

be used for genome-wide association mapping at sufficiently high resolution to directly infer candidate genes. We 

focus here on limb bone length differences, which is of special interest for understanding the evolution of 20 

developmentally correlated traits. We used 172 first-generation descendants of wild-caught mice from the hybrid 

zone to measure the length of stylopod (humerus / femur), zeugopod (ulna / tibia) and autopod (metacarpal / 

metatarsal) elements in skeletal CT scans. We find phenotypic covariation between limb elements in the hybrids 

similar to patterns previously described in M. m. domesticus inbred strains, suggesting that the hybrid genotypes 

do not influence the covariation pattern in a major way. Mapping was performed using 143,592 SNPs and identified 25 
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several genomic regions associated with length differences in each bone. Bone length was found to be highly 

polygenic. None of the candidate regions include the canonical genes known to control embryonic limb 

development. Instead, we are able to identify candidate genes with known roles in osteoblast differentiation and 

bone structure determination, as well as recently evolved genes of, as yet, unknown function. 

 30 

INTRODUCTION 

Vertebrate limbs are an excellent model system to study morphological integration, developmental stability and 

phenotypic covariance patterns (Lande 1980; Hallgrimsson et al. 2002; Young and Hallgrimsson 2005; Schmidt and 

Fischer 2009; Rolian et al. 2010; Kolarov et al. 2011; Pavlicev et al. 2013; Young 2013). The forelimb and hind limb 

represent serially homologous structures, i.e. repeated parts that share a developmental architecture. During 35 

evolution, serially homologous structures are formed when the same underlying developmental program is 

expressed at two (or more) different locations along the body (Hall 1995). While each of the structures may diverge 

over time, they are still expected to show phenotypic and genetic covariation, due to the same general underlying 

developmental program. Hence, genetic variants are expected to have pleiotropic effects on more than one limb 

bone. Such pleiotropy is expected to constrain evolutionary divergence and adaptation. On the other hand, limbs 40 

have also often been subject to specialization during evolution (Young and Hallgrimsson 2005; Schmidt and Fischer 

2009), suggesting that parts of the genetic architecture must be sufficiently free to allow such specializations. 

Accordingly, one should expect that there is genetic variation that determines the evolvability of the structures 

(Hansen et al. 2003; Hansen 2006). The pleiotropic effect of loci that affect two structures in parallel can be 

modified by loci that act on only one of the structures. The latter loci have been called relationship quantitative 45 

trait loci (rQTLs) (Cheverud et al. 2004; Pavlicev et al. 2008, 2013). The identification of rQTLs is of particular 

interest for serially homologous structures, such as the limbs, since they are thought to underlie their evolutionary 

specialization, such as the morphological differentiation that is evident between the forelimbs and hind limbs in 

mice (Figure 1).  
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QTLs influencing bone length have been mapped in various studies of laboratory mouse strains derived from the 50 

subspecies M. m. domesticus (Wolf et al, 2006; Norgard et al. 2008, 2009; Pavlicev et al. 2008; Pavlicev et al. 2013; 

Parmenter et al. 2016 - and references therein). These studies found a high degree of covariation between traits in 

forelimbs and hind limbs and pleiotropy of QTLs, including correlations with body weight (Parmenter et al. 2016). 

rQTLs can be investigated in this system through mapping the genomic regions that influence a phenotypic trait 

depending on the presence of another trait. Pavlicev et al. (2008 and 2013) used this approach to identify loci 55 

conveying variational independence between limb bones.  

Employing a standard F2 QTL mapping approach for detecting loci connected to length variation of limb bones does 

not provide sufficient resolution to identify underlying causative genes (Flint et al. 2005). Although fine-mapping 

approaches using advanced intercrosses provide further resolution (e.g. Norgard et al. 2009), they require 

extensive breeding efforts. With the advent of high-throughput marker technology, it has become possible to make 60 

use of variation present in natural populations through association mapping (Flint et al. 2012). Natural populations 

differ from controlled crosses by longer recombination histories and thus lower levels of linkage disequilibrium, 

facilitating much higher mapping resolution. Typical levels of linkage disequilibrium in natural populations of mice 

enable direct identification of candidate genes (Laurie et al. 2007). Genome-wide association studies (GWAS) 

provide insights into the genetic basis of natural variation as well as in understanding complex traits. In GWAS, tests 65 

for association between each genetic variant, typically single-nucleotide polymorphisms (SNPs), and a phenotype of 

interest are performed (Bush et al. 2012), while controlling for population structure which can cause spurious 

associations (Sul et al. 2016). In addition, the proportion of phenotypic variance attributed to additive genetic 

effects can be estimated in this framework (Price et al. 2010).  

Hybrid zones between subspecies are of particular interest for mapping, since they represent natural cases of 70 

advanced intercrosses (Rieseberg and Buerkle 2002). There are in fact multiple advantages for using hybrid zones 

for mapping. First, because they are formed between two evolutionary distinct lineages, they should harbor more 

phenotypic and genetic variation than single populations, which should increase the power for mapping. Second, it 

is expected that LD is lower than in family intercrosses, but still higher than in fully outbred situations, i.e. a 
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relatively lower marker density is required compared to standard genome wide association studies. Finally, hybrid 75 

zone mapping should be particularly effective for finding loci that are actually causative in the evolutionary 

distinction between the corresponding lineages.  

In previous studies we used samples from the house mouse hybrid zone for mapping of hybrid sterility phenotypes 

(Turner and Harr 2014) and craniofacial traits (Pallares et al. 2014). The Western and Eastern house mouse 

subspecies (M. m. domesticus and M. m. musculus) form a narrow hybrid zone in the middle of Europe (Guenet and 80 

Bonhomme 2003; Phifer-Rixey and Nachman 2015). Mice in the hybrid zone are naturally admixed and linkage 

disequilibrium is sufficiently low to allow high resolution mapping, including the identification of individual 

candidate genes (Turner and Harr 2014; Pallares et al. 2014). Further, the continuous transition in genomic 

composition from one subspecies to the other allows inferences about the genetic architecture and evolution of 

morphological traits (Pallares et al. 2016). 85 

Limbs in tetrapods are divided into three segments, from proximal to distal: the stylopod (humerus / femur) the 

zeugopod (ulna / tibia) and the autopod (metacarpal / metatarsal) (Figure 1). The goal of this study is to explore the 

genetic architecture controlling the length of individual limb bones, as well as their joint variation. We expect that 

homologous elements of forelimbs and hind limbs, and bones that belong to the same segment, i.e. stylopod, 

zeugopod or autopod share common developmental genetic networks. On the other hand, since forelimbs and 90 

hind limbs have different lengths and somewhat different morphological functions (Figure 1), we asked whether we 

can find genetic regions that contribute to length variation in single limb elements. We show that it is indeed 

possible to identify candidate genes that have previously not been implicated in limb length determination, but are 

known to be involved in bone structure determination. Candidate regions are identified in both, single bone 

measures, as well as with a second bone included as a covariate (rQTLs). Together, our results also point towards a 95 

general polygenic architecture for limb length determination in mice. 

 

Page 4 of 39Molecular Ecology Resources



  

5 
 

 

Figure 1. CT-scan of a mouse showing the limb bones measured in this study. The approximate positions of 

landmarks are indicated by dots. Note that the actual landmarks were set in 3D representations of the skeleton. 100 
 

 
 

 

 105 

METHODS 

Mapping population 

Individuals included in this study are first-generation offspring of wild caught mice collected in the hybrid zone in 

Bavaria in 2008 (Turner et al. 2012). The sampling procedure and breeding was previously described in Turner et al. 

(2012) and Turner and Harr (2014). Mice were raised under standard laboratory conditions to reduce the 110 

environmental effect on the traits. They were sacrificed by CO2 asphyxiation between 9 and 12 weeks of age. The 

mapping population consists of 172 males including full-siblings, half-siblings and unrelated individuals 

(Supplementary Table 1). Genome-wide association studies of sterility traits (Turner and Harr 2014) and 

craniofacial traits (Pallares et al. 2014) were previously reported for these mice.  

 115 

Phenotype measurements  
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Mice were scanned with a computer tomograph (micro-CT-vivaCT 40, Scanco, Bruettisellen, Switzerland) with the 

following settings - energy: 70 kVp, intensity: 114 µA, voxelsize: 38 µm. We generated three-dimensional cross-

sections with a resolution of one cross-section per 0.038 mm. The images were transformed into the DICOM 

(Digital Imaging and Communications in Medicine) format and landmarks were placed within the 3D representation 120 

at the endpoints of limb bones in the forelimb (humerus, ulna, metacarpal bone) and in the hind limb (femur, tibia 

and metatarsal bone) using the TINA landmarking tool (Schunke et al. 2012). Two landmarks were used per left and 

right limb bone and linear measurements were obtained for each pair of landmarks. Description of landmarks in 

proximo-distal direction: humerus: from the humeral head to the medial point of the trochlea; ulna: from the most 

proximal point of the olecranon to the styloid process; 3
rd

 metacarpal bone: from the capitate-metacarpal articular 125 

surface of the base to the head; femur: from the greater trochanter to the articular surface for the patella; tibia 

from the intercondyloid eminence of medial condyle to the articular surface with talus, 3
rd

 metatarsal bone from 

the articulate surface of the base to the head (Bab et al. 2007). The approximate positions of the landmarks are 

shown in Figure 1.  

Measurement error was estimated based on double measurements of the same image in fifty individuals. The 130 

percentage of measurement error was calculated according to the ANOVA design described in Yezerinac et al. 

(1992) as the ratio of the within-measurement component of variance to the sum of the within- and among-

measurement components (Claude 2008).  

No significant differences between right and left sides of the corresponding limb bones were found (Supplementary 

Table 2). Because some individuals had partially damaged bones due to previous handling of the samples, all bones 135 

from the affected side for these individuals were excluded from analysis. Measurements from both sides of intact 

individuals (N=136) (i.e. specimens with preserved left and right side) were averaged and individuals with either a 

complete right (N=16) or a complete left (N=20) side were added, i.e. the animals with only one intact side are 

represented with only one measurement. A total of 172 individuals were included in the dataset for association 

mapping.  140 
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The individual bone lengths were normally distributed (Supplementary Tables 3 and 4, Supplementary Figures 1 

and 2). Age showed small but significant correlations with metacarpal (r
2
 = 0.026, p = 0.036, slope = - 0.003) and 

metatarsal (r
2
 = 0.045, p = 0.005, slope = - 0.011) measurements. Hence, for consistency, we performed linear 

regressions of length on age for each bone (i.e. each phenotypic trait entered the model as dependent variable, 

while age was independent variable) and used residuals for further analysis. All statistical analyses for phenotypes 145 

were performed in R version 3.2.5 (R Core Team 2016). 

Pearson (product-moment) correlation coefficients were calculated to estimate the strength of relationships 

between individual limb bones. In order to investigate the transition in limb length across the hybrid zone (for the 

results shown in Figure 2), the forelimb was represented as the sum of humerus, ulna and metacarpal bones, and 

hind limb as the sum of femur, tibia and metatarsal bones. Following the procedure described in Pallares et al. 150 

(2016) and based on a specific SNP dataset from 37 loci, we performed regressions of forelimb and hind limb 

lengths versus percentage of M. m. domesticus alleles (“PairMid” in Supplementary Table 1).  

 

Association mapping 

SNP genotype data generated using the Mouse Diversity Genotyping Array (Affymetrix, Santa Clara, CA, USA) (Yang 155 

et al. 2009) were previously reported in Turner and Harr (2014) and Pallares et al. (2014). SNP positions were 

converted to the coordinates of the GRCm38/mm10 assembly of the mouse genome using the LiftOver tool in the 

UCSC Genome Browser (Kent et al. 2002). SNPs were pruned in PLINK (Purcell et al. 2007) using a sliding window 

approach with the following settings, 30 SNPs window size, 5 SNPs step size and a VIF threshold of 1 x 10
−6

 (VIF = 

1/(1−R
2
) (see Turner and Harr 2014 for details). Essentially, this procedure removed nearby SNPs in strong LD from 160 

the dataset. The SNP genotype dataset contained genotype data for 185 individuals, which were filtered for SNPs 

≥	5% minor allele frequency (MAF). In order to use the same set of SNPs as in Turner and Harr (2014) and Pallares 

et al. (2014) for the present study, which involved a subset of only 172 individuals, and therefore could change the 

minor allele frequencies slightly, an additional MAF filter of 1% (default option in GEMMA) was imposed for 

mapping. In total, 143,592 SNPs (of 285,625 SNPs called from the array) were used for mapping in this study.  165 
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For association mapping, we implemented the univariate linear mixed model analysis in genome-wide efficient 

mixed-model association - GEMMA (version 0.94.1) (Zhou and Stephens 2012), using the Wald test (–lmm 1). With 

this approach, association between a marker and a single phenotype is tested using a variance component model 

that corrects for relatedness and population structure (Kang et al. 2010) by incorporating a relatedness matrix as a 

random effect. All LD-pruned SNPs from autosomes were included in the calculation of the centered kinship matrix. 170 

Because we used only males, the number of X-chromosomes sampled is half that of autosomes. We found no 

significant associations with SNPs on the X chromosome in preliminary mapping analyses, and therefore excluded it 

from further analysis. 

We investigated the general genetic architecture of limb bone lengths using Bayesian sparse linear mixed models 

(BSLMM), a hybrid approach that simultaneously allows for a small number of individually large genetic effects and 175 

combined effects of many small genetic effects, with the relative contributions of both being inferred from the data 

itself (Zhou et al. 2013). Using BSLMM, we estimated PVE, the proportion of variance in phenotypes explained by all 

available SNPs and PGE, which is the proportion of total genetic variance explained by “large” effect size SNPs. Data 

were fitted with a standard linear BSLMM (–bslmm 1), using 500K burn-in steps followed by 5 million sampling 

steps. Posterior samples for the hyper-parameters (PVE, PGE) were recorded for every 10
th

 iteration (see GEMMA 180 

manual for details, and Zhou et al. 2013). The respective median values for PVE and PGE are reported from the 

second half of the sampling iterations (Wheeler et al. 2016).  

To identify possible rQTLs specific for a given limb bone (Pavlicev et al. 2008), we fit univariate linear mixed models 

in GEMMA to test for the genetic effect of each SNP on one trait, including another phenotype in the model as a 

covariate. This analysis was conducted in both directions, i.e. traits were exchanged in the position of a response 185 

variable and the covariate (Pavlicev et al. 2013). Wald tests were used in mapping (–lmm 1), as described above for 

single bones. The specific combinations of bones used in the analysis with a covariate were selected based on 

higher phenotypic and genetic correlations (see Results). Therefore, the combinations included mostly bones 

within one limb (humerus - ulna, femur - tibia) and bones between limbs (humerus - femur, ulna - tibia, humerus - 

tibia, ulna - femur and metacarpal - metatarsal). We did not perform multivariate mapping (Zhou and Stephens 190 
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2014) of bone phenotypes because preliminary mapping analyses showed our sample size was too small to reliably 

reach convergence. 

 

Statistical analysis 

To define genome-wide significance thresholds for each individual limb bone, we randomly assigned (10,000 times) 195 

phenotypes to individuals (thus preserving genetic structure), and performed mapping in GEMMA, recording the 

lowest SNP association p-value for each permuted dataset. The significance thresholds for each bone were then 

defined as the 5
th

 percentile of values for 10,000 permutations. For mapping analyses with a second bone as a 

covariate, the focal pair of phenotypes from each individual were kept together (i. e. humerus and ulna as a 

covariate from one individual were randomized always in a pair). As for single bones, the lowest p-value was 200 

recorded for each permutation and significance thresholds defined as the 5
th

 percentile of values for 10,000 

permutations for each analysis.  

We also visually inspected the Manhattan plots for obvious “peaks”, i.e. clusters of SNPs with low p-values and 

selected the lowest threshold that would contain all of the obvious peaks. In this way, p < 10
-5 

was selected as a 

cutoff. A significance threshold of p < 10
-5

 is expected to yield one false positive SNP association per trait in our 205 

dataset of 143,592 SNPs. In the supplementary material we provide extended tables with SNPs significant with a 

threshold of p < 10
-4

; because this is expected to yield 14 false positives per trait in our dataset, we do not analyze 

these SNPs further. 

For each significant SNP, we determined an “LD region” surrounding it by selecting the furthest SNP within 1 Mb 

upstream and downstream in strong LD (r
2
 ≥ 0.8) with the focal SNP. These LD analyses were performed using the 210 

full genotype dataset (i.e. 285,625 SNPs prior to LD pruning) in PLINK (version v1.90b3.32) (Purcell et al. 2007). For 

significant SNPs without any other SNP in LD within 1 Mb we used the median region size as an approximation.  

Candidate gene annotation in the LD regions containing significant SNPs was performed using the UCSC Genome 

Browser (GRCm38/mm10) (Kent et al. 2002) and MGI database (Blake et al. 2017).  
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 215 

Genetic correlation 

We used bivariate restricted maximum likelihood analysis implemented in the genome-wide complex trait analysis 

- GCTA (version 1.26.0) (Yang et al. 2010; Yang et al. 2011b) to estimate the genetic correlation between all 

combinations of two traits. This analysis essentially compares the phenotypic similarity and the genetic similarity 

between individuals within and across two traits. The genetic correlation (rg) is defined as �� = 	 ���	(��,��)
����	(��)	∗	���	(��)

 , 220 

where (varg(ti)) is the additive genetic variance of trait i and covariance (covg(ti,tj)) is the additive genetic covariance 

between the traits. The variances and covariances are estimated directly by REML in GCTA (Visscher et al. 2014).  

The genetic correlation was examined between each pair of traits including ten principal component axes (i. e. the 

first ten eigenvectors of the principal component analysis) from the genetic relationship matrix to account for 

population structure (Yang et al. 2011b). A likelihood-ratio test was applied to determine whether traits are 225 

genetically similar, by setting the value of the genetic correlation coefficient to zero (no genetic correlation). 

Additionally, we tested whether the correlation coefficient equals one, which would mean identical genetic 

background among two traits (Deary et al. 2012) (note that the value of exactly one would never be reached due to 

experimental variances). It is important to note that estimates of genetic correlations have high standard errors, 

especially in small samples such as ours (Visscher et al. 2014).  230 

 

Phenotypic variance explained by each chromosome 

Chromosomal partitioning of variance was performed for each trait using the software GCTA. The variance in bone 

length explained by each chromosome was calculated with restricted maximum-likelihood analysis. Separate 

analyses were performed for each bone and for each of the 19 autosomes, by including only data from one 235 

chromosome in the model. As above, the first ten principal components from the genetic relationship matrix were 

included as covariates to account for the effect of variance due to population structure. Individual per-chromosome 

variance estimates were inflated because of relatedness among individuals; therefore, we estimated the relative 

contribution of each chromosome to overall trait variance (Pallares et al. 2014).  
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 240 

 

RESULTS 

Bone length measures and correlations 

Mean bone length measurements with standard deviations and measuring error are provided for all bones in Table 

1. Measuring error was larger for metacarpal and metatarsal bones due to the limited scanning resolution, but still 245 

low relative to variances and thus considered to be negligible in further analyses. We found no significant 

differences between right and left sides across all samples (Supplementary Table 2), hence we averaged these 

measures as well as their measuring errors. 

 

Table 1. Bone length measurements. 250 

Trait Humerus  Ulna Femur Tibia Metacarpal Metatarsal 

Mean length (mm) 11.11 13.57 14.51 16.57 3.22 7.35 

Standard deviation (mm) 0.46 0.44 0.60 0.62 0.12 0.29 

% measuring error* 0.25 0.20 0.18 0.12 5.69 0.53 

* the percent of measurement error is independent of the units of the measured objects 

 

 

Across the hybrids, lengths of forelimbs and hind limbs were significantly correlated with the proportion of 

genomic ancestry from each subspecies (Figure 2). A similar pattern was observed for the transition of skull shapes 255 

across the hybrid zone, where we have argued that this is compatible with a polygenic model (Pallares et al. 2016). 
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Figure 2. Correlation between limb length and genomic ancestry. Regression of forelimb (a) and hind limb (b) over 
the percentage of M. m. domesticus alleles. Forelimb values consist of summed values of humerus, ulna and 
metacarpal bone (r

2 
= 0.25, p = 8.8 x 10

-14
), hind limb values are shown as a sum of femur, tibia and metatarsal bone 260 

(r
2 

= 0.22, p = 5.1 x 10
-12

). Grey dots include values of 25 additional animals taken from Pallares et al. (2016) for 
which only partial genotype data were available, i.e. these were not included in the association analyses. 

 

We observed phenotypic correlations between stylopod (humerus - femur), zeugopod (ulna - tibia) and autopod 

(metacarpal - metatarsal) elements (Table 2, upper diagonal). As expected (Schmidt and Fischer 2009; Pavlicev et 265 

al. 2013; Martin-Serra et al. 2015), stylopod and zeugopod elements revealed higher correlations in comparison to 

autopod elements. Similar relationships were observed for the genetic correlations (Table 2, lower diagonal), which 

are based on the genome-wide SNP-to-phenotype similarity, as estimated by the bivariate restricted maximum 

likelihood analysis implemented in GCTA (see Methods). 

 270 

Genome wide association mapping and genetic architecture 

Genome-wide association mapping included 143,592 SNPs and each bone was analyzed separately. We ran linear 

mixed models with and without covariates to identify SNPs significantly associated with phenotypes, and used 

Bayesian sparse linear mixed models to make inference about the overall genetic architecture of the traits.  
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The results from mapping individual bones are shown as Manhattan plots in Figure 3 (Q-Q-plots are provided in 275 

Supplementary Figure 3). When using genome-wide permutation-based thresholds, we find three significant SNPs 

associated with three different bones (chr2 in metacarpal bone, chr3 in ulna and chr9 in humerus). We also 

identified SNP associations using a more permissive significance threshold of p < 10
-5

. At this level, we identified 23 

significant SNPs within 13 separate “LD regions” (see Methods), distributed across 9 chromosomes and six bones, 

with an overlapping region on chr9 for humerus and tibia, and on chr16 for metacarpal and metatarsal bones 280 

(Supplementary Table 5). The size of LD regions around significant SNPs varied from 51 bp to 601 kb (median 114 

kb).  
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Figure 3. Manhattan plots showing SNP associations with lengths of six limb bones. Dashed lines indicate 285 
significance thresholds with p < 10

-5
 (lower line) and genome-wide threshold (GWT) based on 10,000 permutations 

(upper line) in (a) humerus (GWT = 9.87 x 10
-7

), (b) ulna (GWT = 9.45 x 10
-7

), (c) femur (GWT = 9.87 x 10
-7

), (d) tibia 
(GWT = 9.65 x 10

-7
), (e) metacarpal (GWT = 8.96 x 10

-7
), (f) metatarsal bone (GWT = 9.47 x 10

-7
).  
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Bayesian sparse linear mixed model analyses were used to calculate parameters relevant to the genetic 290 

architecture of the bone phenotypes. The proportion of phenotypic variance (PVE) explained by all SNPs in the 

dataset (i.e. “SNP heritability” - Wray et al. 2013) are reported in Table 2. 

 

Table 2. Phenotypic and genetic correlations  

 295 
Trait Humerus Ulna Femur Tibia Metacarpal Metatarsal 

Humerus 0.77
3
 0.86

1
 0.88

1
 0.88

1
 0.40

1
 0.55

1
 

Ulna 0.91
2
 0.82

3
 0.84

1
 0.91

1
 0.47

1
 0.64

1
 

Femur 0.96
2
 0.92

2
 0.85

3
 0.89

1
 0.34

1
 0.51

1
 

Tibia 0.88
2
 0.91

2
 0.96

2
 0.85

3
 0.43

1
 0.62

1
 

Metacarpal 0.51
2
 0.48

2
 0.50

2*
 0.54

2
 0.68

3
 0.74

1
 

Metatarsal 0.54
2
 0.62

2
 0.54

2
 0.60

2
 0.77

2
 0.67

3
 

 
1
Phenotypic correlation coefficients (off-diagonal, upper triangle, dark gray) in 172 genotyped individuals (Pearson product-

moment correlation, all t-tests were significant at p < 0.001).  
2
Genetic correlations from bivariate analysis, based on genome-wide SNP similarity with phenotypic similarity (off-diagonal, 

lower triangle, white). In all but one case the estimated genetic correlation coefficients are significantly different from zero and 300 
from one (likelihood ratio test, p < 0.05, one-sided test). *For femur-metacarpal, the correlation was significantly different from 
one, but not from zero. 
3
Proportion of phenotypic variation explained (PVE) by all the SNPs used in the mapping from Bayesian sparse linear mixed 

model (diagonal – bold, light gray). 

 305 

We observed high values for all bones, indicating limb bone lengths are highly heritable, at least under the 

laboratory breeding conditions that served to reduce environmental variation. In contrast, lower values (0.28 – 

0.47) were found for the proportion of genetic variance explained by few loci with large effects, so-called “sparse 

effects” (PGE in GEMMA) (Supplementary Table 6), suggesting that a larger proportion of the variation is explained 

by many loci with small effect sizes. Further, effect size for the SNP with the lowest p-value from each significant 310 

region and posterior mean estimates for the effect size parameters from Bayesian sparse linear mixed model are 

reported in Supplementary Text 1 and Supplementary Table 7.  

For highly polygenic traits, we expect that the proportion of variance in bone length explained by each 

chromosome should be correlated with chromosome length (Yang et al. 2011a; Berenos et al. 2015). In our 

previous study of skull shape across the hybrid zone, we indeed found such a correlation (Pallares et al. 2014). 315 
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Hence, we conducted this analysis for each individual limb bone. We found significant positive correlations for 

humerus and femur, but not for the other bones (Figure 4 and Supplementary Figure 4). 

 

 
 320 
Figure 4. Correlation between variance explained and chromosome length. Relationship between phenotypic 
variance explained by each chromosome and chromosome length for (a) humerus, (b) femur bone. 

 

 

Power to detect associations in the hybrid zone samples from simulation of additive model 325 

Since our sample size is limited, we used simulations to assess the power of our dataset to detect significant SNPs 

at our chosen significance threshold. As detailed in Supplementary Text 2 (plus Supplementary Table 8), our power 

to detect at least one causal SNP as significant out of 10 (or 15 respectively) simulated is close to 100%. However, in 

none of the 1,000 simulated datasets did we identify all causal SNPs. In the majority of simulations two to three 

(i.e. 13-30%) causal SNPs were identified (i.e. significant SNP within 10 Mb of ‘causal’). This suggests that the results 330 

reported above represent only a subset of all causal variation present in the hybrid zone, but, at the same time, 

confirm it is possible to detect significant associations in this population.  
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Candidate genes 

To identify candidate genes influencing limb bone length in mice, we evaluated all annotated genes (coding and 335 

non-coding) overlapping the 13 LD regions containing SNPS with p < 10
-5

. In Table 3, we highlight genes with known 

roles in any aspect of bone formation. Several genes were previously associated with limb phenotypes in other 

studies (see discussion for further details). It should be noted that, because we do not have sufficient mapping 

resolution to identify causative mutations, we cannot distinguish between regulatory or coding effects. However, 

three regions do not overlap any genes, suggesting the underlying mutation is a regulatory polymorphism affecting 340 

a nearby or distant gene. Hence, evaluation of candidate genes should be viewed as suggestive of potential 

underlying genetic causes. 

 

Table 3. Genomic regions associated with limb bone length, identified by individual bone analysis 

Bone Region 
N of 

SNPs
1
  

p-value of 

the best 

SNP
2
 

Size (Mb)
3
 Genes in the region

4
 

Metacarpal chr2: 35028134-35029436 1 (2) 6.46 x 10
-7

 0.001 [0.114] Hc, AI182371 

Ulna chr3: 82469792-82583792 2
5
 5.60 x 10

-7
 [0.114] Npy2r 

Ulna chr6: 67069424-67183424 1  9.56 x 10
-6

 [0.114] 
E230016M11Rik, AK079709, 

AK039826 

Humerus 
chr9: 46604715-46718715 

1  5.74 x 10
-8

 
[0.114] Gm22805 

Tibia 1  1.17 x 10
-6

 

Metatarsal chr11: 55936031-55964675 2 (3) 3.29 x 10
-6

 0.029 [0.114] Gm12239 

Femur chr12: 5161413-5762255 2 (12) 2.88 x 10
-6

 0.601 Klhl29, 2810032G03Rik 

Humerus chr12: 5792918-5907264 2 (12) 4.31 x 10
-6

 0.114 AK135963 

Ulna chr12: 93777662-93851912 1 (3) 5.09 x 10
-6

 0.074 [0.114] / 

Tibia chr13: 117841280-117955280 1  8.69 x 10
-6

 [0.114] Hcn1 

Ulna chr15: 58538615-58676719 2 (9) 2.83 x 10
-6

 0.138 Fer1l6 

Metatarsal chr16: 30263056-30263107 1 (2) 7.74 x 10
-6

 
5.10x10

-5
 

[0.114] 
Cpn2, Lrrc15, Gp5, Atp13a3 

Metacarpal 
chr16: 41712286-42136622 

3 (33) 2.62 x 10
-6

 
0.424 Lsamp 

Metatarsal 2 (33) 2.27 x 10
-6

 

Metacarpal chr16: 45984088-46202709 1 (16) 5.68 x 10
-6

 0.219 Cd96, Gm4737, Plcxd2
6
 

 345 
1
Number of SNPs in the region with p < 10

-5
, in parentheses number of total SNPs that are in LD within the same region. 

2
p-values in bold represent the SNPs above the permutation-based threshold. 

3
Size of the LD region is provided. In cases where this was smaller than the median size of regions (0.114 Mb), we used the latter 

to search for annotated genes, indicated as [0.114] in the respective fields. 
4
Annotated genes overlapping with the region; genes involved in limb development, phenotype or expression are highlighted in 350 

bold.  
5
two SNPs within 6kb, but not in LD. 
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6
Overlap with previous QTL study on limb length in Pavlicev et al. (2013). 

 

 355 

Identifying genetic associations unique to individual bones by accounting for covariation with another bone  

To identify possible rQTLs, we performed the bone length mapping with a second bone included as a covariate (see 

Methods for specific combinations of bones). This revealed 17 SNPs above the genome-wide permutation 

thresholds for the following bone combinations (the first capital letter refers to the bone tested, while the second 

capital letter for the one used as a covariate): HcovU, FcovT, HcovF, UcovT, UcovF and FcovU (Table 4 and 360 

Supplementary Table 9). Manhattan plots are provided in Supplementary Figure 6 and the corresponding Q-Q-plots 

are provided in Supplementary Figure 7. None of the SNPs significant at genome-wide level and p < 10
-5

 when 

mapping individual bone lengths were also significant in mapping analyses with a second bone as covariate. With 

significance threshold of p < 10
-5

, we identified associations clustered in 39 LD regions with a median size of 118 kb 

(min = 113bp, max = 1.4 Mb) for 12 bone combinations. Overlapping regions were found in the following 365 

combinations with a second bone as covariate: chr 1 (HcovF, HcovT, TcovH), chr6 (HcovF, FcovH), chr16 (HcovU,  

HcovF, HcovT) and chr19 (HcovU, UcovH) (Table 4 and Supplementary Table 9).  

We are particularly interested in candidate regions identified by mapping with a covariate, which are specific to 

only one bone from a developmentally linked pair. These loci may be involved in breaking constraints from 

correlated development, and thus would enable independent evolution of length for a single limb bone. We have 370 

therefore inspected these regions for candidate genes, using the same approach as for the individual bone analysis. 

The results are shown in Table 4 (see discussion for details). 

 

Table 4. Genomic regions associated with limb bone length, identified by mapping with covariates  

 375 

Bone
1
 Region N of SNPs

2
  

p-value of 

the best 

SNP
3
 

Size (Mb)
4
 Genes in the region

5
 

UcovF chr1: 3625815-4718067 2 (87) 5.63 x 10
-7

 1.092 Sox17, Rp1, Xkr4, AK149000 

FcovU chr1: 9262814-9380814 1  5.92 x 10
-6

 [0.118] Sntg1 

HcovF chr1: 23690398-23716894 1 (3) 
1.39 x 10

-6
 

0.026 
[0.118] 

 / 
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FcovT chr1: 84059655-84952620 2 (21) 4.21 x 10
-8

 0.893 
Fbxo36, Pid1, Dner

6
*, Trip12*, Slc16a14, 

Mir6353, AK032919, AK036072 

FcovH chr1: 119187233-119322362 1 (9) 8.77 x 10
-6

 0.135 / 

HcovF chr1: 119320805-119438805 1  4.10 x 10
-6

 [0.118] Inhbb, AK039419 

HcovT chr1: 128607010-128725010 1  7.48 x 10
-6

 [0.118] / 

HcovF chr1: 152359185-152477185 1  3.60 x 10
-6

 [0.118] Tsen15, Colgalt2 

HcovF chr1: 154018113-154036315 1 (3) 4.87 x 10
-6

 
0.018 

[0.118] 
Gm29291, Gm28286, AK043564, 

AK154552 

HcovF 

chr1: 154053011-154077631 

2 (2) 5.20 x 10
-6

 
0.025 

[0.118] 
AK043564, AK154552 HcovT 2 (2) 3.29 x 10

-6
 

TcovH 2 (2) 9.85 x 10
-6

 

FcovH chr2: 8781928-9002418 2 (10) 3.87 x 10
-6

 0.22 / 

MCcovMT chr2: 33909493-34027493 1  5.15 x 10
-6

 [0.118] AK162388, C230014O12Rik 

MCcovMT chr2: 54244165-54348111 1 (3) 6.20 x 10
-6

 0.104 / 

TcovF chr3: 100168735-100360505 1 (9) 6.63 x 10
-6

 0.192 Gdap2 

HcovT chr3: 130829175-130833777 1 (2) 6.90 x 10
-6

 
0.005 

[0.118] 
/  

HcovF chr3: 154809225-154926757 1 (3) 8.46 x 10
-6

 0.118 Tnni3k 

UcovF chr5: 8672123-8674096 1 (2) 2.48 x 10
-6

 
0.002 

[0.118] 
Abcb1a, Rundc3b 

FcovT chr6: 44025034-44505141 1 (3) 4.17 x 10
-8

 0.48 / 

FcovH chr6: 102314940-102422804 1 (3) 7.91 x 10
-6

 0.108 4930587E11Rik, Cntn3 

FcovT chr6: 134066708-135439926 6 (37) 6.77 x 10
-9

 1.373 

2810454H06Rik, Apold1, Gprc5d, 

Gm19434, Gsg1, Pbp2, Bcl2l14, Borcs5, 

Crebl2, Cdkn1b, Lockd, Ddx47, Gprc5a, 

Hebp1, Fam234b, Gsg1, Emp1, Lrp6, 

Mansc1, Dusp16, Gpr19, Etv6 

FcovT chr6: 139526562-139581085 3 (8) 2.77 x 10
-7

 
0.055 

[0.118] 
Rergl, Pik3c2g 

HcovF 
chr6: 144869562-144987562 

1  1.03 x 10
-6

 
[0.118] / 

FcovH 1  8.08 x 10
-6

 

TcovF chr6: 146155662-146273662 1  7.51 x 10
-6

 [0.118] Itpr2
6
* 

HcovF chr6: 146457299-146575299 1  1.94 x 10
-6

 [0.118] Ints13 (Asun), Itpr2
6
* 

TcovH chr7: 34695176-34813176 1  4.19 x 10
-6

 [0.118] Chst8 

FcovU chr7: 43234461-43352461 1  5.22 x 10
-7

 [0.118] Zfp715, Siglecf 

FcovT chr8: 45416400-45534400 1  5.67 x 10
-6

 [0.118] Sorbs2
6
** 

TcovF chr12: 67683133-68174899 1 (27) 3.11 x 10
-6

 0.492 / 

FcovH chr12: 86591551-86709551 1  5.48 x 10
-6

 [0.118] Vash1, Angel1 

TcovH chr15: 44447489-44565489 1  3.51 x 10
-6

 [0.118] Pkhd1l1 

FcovU chr15: 59470046-59482266 1 (3) 7.14 x 10
-7

 
0.012 

[0.118] 
Nsmce2, AK080559 

FcovU chr15: 72720799-72733036 1 (2) 
6.61 x 10

-6
 

0.012 
[0.118] 

Trappc9 

UcovT chr15: 75470303-76162911 2 (37) 3.29 x 10
-6

 0.693 

Ly6h, Gpihbp1, Zfp41, Mafa, Gsdmd, 

Mroh6, Naprt, Tigd5, Pycrl, Tsta3, Zfp623, 

Ccdc166, Mapk15, Mir6952, Top1mt, 

Rhpn1, Eef1d, Zfp707, Fam83h, Scrib
6
***, 

Puf60, Nrbp2, Eppk1, BC024139, Zc3h3 

UcovT chr15: 76148236-76266236 1  8.84 x 10
-8

 [0.118] Mir1942, Grina, Mir6953, Plec, Parp10 

HcovF chr16: 92988497-93106497 1  3.55 x 10
-6

 [0.118] / 

HcovU  

chr16: 93764330-94205101 

4 (5) 8.30 x 10
-7

 

0.441 
Chaf1b, Cldn14, Dopey2, Morc3, Sim2, 

Hlcs, AK009785 
HcovF 2 (5) 8.98 x 10

-7
 

HcovT 3 (5) 1.72 x 10
-6

 

HcovF chr17: 30935073-31053073 1  3.49 x 10
-7

 [0.118] Umodl1, Glp1r, AK138161 
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HcovF chr17: 31860580-32474832 6 (17) 5.47 x 10
-6

 0.614 

Rrp1b, Ephx3, Gm4432, A530088E08Rik, 

Pglyrp2, Pdxk-ps, Notch3
6
***, Akap8, 

Akap8l, Rasal3, Cyp4f39, Hsf2bp, Brd4, 

Wiz 

HcovU 
chr19: 56931261-56931374 

1 (2) 3.45 x 10
-6

 
1.13 x 10

-4
 Afap1l2, Vwa2 

UcovH 1 (2) 5.90 x 10
-6

 

 
1
Annotation: first capital letter stands for the bone tested, second capital letter for the one used as covariate.  

2
Number of SNPs in the region with p < 10

-5
, in parentheses number of total SNPs that are in LD within the same region. 

3
p-values in bold represent the SNPs above the permutation-based threshold. 

4
Size of the LD region is provided. In cases where this was smaller than the median size of regions (0.118 Mb), we used the latter 380 

to search for annotated genes, indicated as [0.118] in the respective fields 
5
Annotated genes overlapping with the region; genes involved in limb development, phenotype or expression are highlighted in 

bold.  
6
Overlap with previous QTL studies in limb length: * Norgard et al. 2011; ** Pavlicev et al. 2013; *** Kenney-Hunt et al. 2006.  

 385 
 
 

DISCUSSION 

We have explored the use of animals from a natural hybrid zone for genome-wide association mapping of length 

differences in limb bones. Limb length variation is a model for understanding the evolution of correlated traits; 390 

therefore it is of particular interest to map not only loci that affect individual bone length, but also loci that are 

involved in influencing correlated variation. We were able to identify associated genomic regions for both of these 

components, despite our moderate sample size and the highly polygenic nature of these traits.  

We report candidate regions significant at p < 10
-5

, a more permissive level than the significance threshold obtained 

by permutations tests. For highly polygenic traits, permutation tests are overly conservative, especially if sample 395 

sizes are relatively small (Yang et al. 2010, 2011a). We note that significant SNP associations from mapping 

individual bones disappeared when including a correlated bone phenotype as a covariate. This pattern is not 

expected for spurious associations, and thus provides support for p < 10
-5 

as an appropriate threshold.  

In the single bone analyses we detected two loci that affected more than one bone, one on chr9 (humerus and 

tibia) and one on chr16 (metacarpal and metatarsal bones) (Table 3), implying these loci are involved in influencing 400 

covariation. Further such overlaps are detected under the relaxed threshold of p < 10
-4

 (Supplementary Table 5), 

also indicating correlated responses across traits. Interestingly, the chr9 locus shows an additional association with 

ulna and femur at this lower p-value cutoff.  
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The phenotypic correlations among limb bones we find in mice from the hybrid zone are consistent with a 

hierarchical covariance structure, with higher correlations among homologous elements between limbs (stylopod 405 

and zeugopod) than correlations within limbs, and lower correlations between stylopod / zeugopod elements and 

autopod elements (Hallgrimsson et al. 2002; Young and Hallgrimsson 2005). Note that the bones of the autopod 

are shorter and have higher measurement error, which might reduce correlation estimates involving these bones. 

However, it is generally known that autopod elements can show larger morphological variation relative to proximal 

limb elements (Shubin et al. 1997; Capdevila and Belmonte 2000), apparently due to their interaction with the 410 

substrate and hence more room for plastic responses (see also below). 

Hybrids show limb bone lengths intermediate between pure subspecies (Figure 2), in contrast to transgressive 

fertility phenotypes observed in some individuals from this mapping population (e.g. some hybrids have lower 

testis weight than either pure subspecies, Turner and Harr 2014), putatively caused by epistatic hybrid 

incompatibilities. Lack of transgressive bone length phenotypes suggests the developmental pathways leading to 415 

limb formation are not majorly affected by hybrid incompatibilities.  

Our results are compatible with shared developmental processes determining lengths of correlated limb bones; we 

find high correlations among bone length phenotypes and identify candidate regions associated with multiple limb 

bones. However, these processes are not determined by a few controlling loci of large effect. Chromosomal 

partitioning of variance (Figure 4) and higher values of PVE (SNP heritability) vs. PGE (sparse effects) support a 420 

highly polygenic model for limb bone length.  

 

Candidate genes  

The molecular mechanisms of limb formation have been intensively studied in developmental biology, including 

identification and characterization of many underlying causative genes and interactions. The major developmental 425 

genes that have been implicated in regulating embryonic limb development include Hox genes, Tbx3, Tbx4, Tbx5, 

Fgf4, Fgf8, Fgf10, Shh, Pitx1, Wnt2b, Meis1, Meis2, Wnt3a, Aldh1a2, Bmp2, Bmp4, Bmp7, Gli3, Hand2, Cyp26b1, 
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Grem1, Grem2 (Logan 2003; Tickle 2006; Sheeba et al. 2016). Interestingly, none of these genes overlap with any 

candidate regions identified here (>1Mb away). These results suggest that the developmental genes that initiate 

embryonic limb growth and determine their identity may have little influence on natural variation in bone length.  430 

In contrast to the lack of associations with previously described control genes, some candidate regions identified 

here overlap with previously reported QTL regions for limb length and proposed candidate genes within them. 

These include Scrib and Notch3 (Kenney-Hunt et al. 2006), the region including Dner, Trip12 and Itpr2 (Norgard et 

al. 2011), as well as Plcxd2 and Sorbs2 (Pavlicev et al. 2013). However, not much is known about the roles these 

genes play in bone development, and only Plcxd2 is known to be expressed in developing limbs. Interestingly, 435 

Pavlicev et al. (2013) found this gene as a rQTL candidate for forelimb / hind limb differences in mice, while we 

found it in the individual bone mapping of metacarpal length, a bone that was not included in their analysis. 

Another gene implicated in metacarpal length is the hemolytic complement gene Hc. Although mostly known from 

the blood clotting cascade, complement genes were also found to be involved in bone homeostasis (Schoengraf et 

al. 2013). Complement proteins are known to be present in the zones of endochondral bone development with Hc 440 

being expressed in the hypertrophic zone of foetal tibiae and femurs (Andrades et al. 1996). Several SNPs 

associated with the autopodal bone length identify the gene Lsamp on chromosome 16. While Lsamp is mostly 

expressed in the cortical and subcortical regions of the neural limbic system (Zacco et al. 1990), it was also 

identified as a causative gene for osteosarcomas (Baroy et al. 2014). The Y2 receptor gene Npy2r, on chromosome 

3, is associated with ulna length. Y2 receptor signaling is known to be important in neuropeptide Y (NPY)-mediated 445 

effects on energy homeostasis and bone physiology and Npy2r was found to regulate trabecular bone homeostasis 

(Shi et al. 2010). 

The other genes identified in the individual bone analyses do not have annotated functions related to bone growth 

or homeostasis. However, given the double functions of such genes as Hc and Lsamp, it could be fruitful to 

investigate possible bone effects for these other candidate genes. Of particular interest are regions that code for 450 

recently evolved genes, which are generally thought to play roles in lineage specific adaptations (Tautz and 

Domazet-Loso 2011; Schlötterer 2015). We find quite a number of such loci within the mapped intervals, which are 
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so far only annotated as transcripts of unknown function (listed as Gm.. or AK.. numbers, or numbers ending with 

...Rik in Table 3 and 4). On the other hand, some of these transcripts may be associated with a molecular function. 

For example, the region in chr9 that shows associations with more than one bone (see Table 3 - and discussion 455 

above) codes for a small nuclear RNA (snRNA - Gm22805). Such RNAs can be involved in regulating multiple other 

RNAs. Most interestingly, we find that the transcript is partially deleted in M. m. musculus populations (can be seen 

in the genome sequence data provided in Harr et al. (2016)), i.e. this could potentially constitute the causative M. 

m. domesticus / M. m. musculus polymorphism that is detected in the mapping. 

Mapping analyses including a second bone as covariate also yielded a list of candidate genes, several of which have 460 

known involvement in bone growth. A region on chromosome 6, associated with femur length, contains two such 

genes; Cdknb1 is broadly expressed and has a role in chondrocyte proliferation, among other functions (Cardelli et 

al. 2013). Lrp6 is, together with Lrp5, an essential co-receptor of wnt signaling with a direct involvement in 

osteoblastogenesis and cartilage development (Joeng et al. 2011). Humerus length is associated with a region 

including Morc3, which is involved in calcium homeostasis and osteoblast differentiation (Jadhav et a. 2016). 465 

Bone morphology is not only influenced by genetic and developmental processes, but can also be highly plastic due 

to changes in mechanical load. This can lead to an interdependence with other skeletal elements and the 

musculature (Tsutsumi et al. 2017). The extent to which plasticity is also under genetic constraints remains an open 

question, but it seems plausible that genes without direct roles in bone development may influence bone 

structures indirectly by moderating plasticity. On the other hand, Young (2013) has argued that macroevolutionary 470 

diversity of limbs may be dependent on constraints provided by the early developmental program. But subspecies 

may be too closely related to show such constraints, hence we would not have power to detect them here. Major 

changes in limb proportions, as well as digit losses, were described for the rodent superfamily Dipodoidea 

(including the bipedal Jerboas) (Moore et al. 2015), indicating that even macroevolutionary divergence can occur 

rapidly, provided the ecological conditions allow this. It has been suggested that both early and late developmental 475 

processes can contribute to digit losses in mammals (Cooper et al. 2014).  

Page 23 of 39 Molecular Ecology Resources



  

24 
 

Our candidate gene list overlaps only partially with genes found in previous mapping efforts for the same 

phenotypes (e.g. Wolf et al, 2006; Norgard et al. 2008, 2009; Pavlicev et al. 2008; Pavlicev et al. 2013; Parmenter et 

al. 2016). However, these previous efforts were all based on M. m. domesticus mapping populations. Because our 

mapping population contains variation from two different subspecies of house mice, we may expect to find 480 

additional loci. We note that novel loci were also identified by mapping of skull shape phenotypes in this same 

hybrid mapping population (Pallares et al. 2014) relative to a M. m. domesticus panel (Pallares et al. 2015).  

 

Conclusion 

Revealing the genetic architecture of quantitative phenotypes of wild animals remains very challenging. Association 485 

mapping in natural populations has great promise to achieve this goal. Our results show that hybrid zones can be 

used to identify a subset of candidate loci for polygenic traits at relatively high resolution, even with a modest 

number of individuals. 

 

Acknowledgements 490 
 
We thank B. Poerschke and E. Blohm-Sievers for scanning the mice and A. Schunke for advice on scanning and 3D 

landmark digitalization. We thank X. Zhou for help with GEMMA, R. Bakarić for bioinformatics help, K. Delmore, K. 

Ullrich and G. Reeves for discussions on mapping. The study was funded by institutional support by the MPG to DT.  

 495 

Data accessibility 

Files for raw limb measures, age corrected measures, the kinship matrix and mapping files are deposited in Dryad 

under DOI: 10.5061/dryad.rg6k9 

Page 24 of 39Molecular Ecology Resources



  

25 
 

Files on Dryad include the PED file containing genotype data for 185 individuals (column 7 onwards) and MAP file 

with the original set of SNPs prior to LD-pruning (285,625 SNPs); binary ped file (BED) with genotypes of 172 500 

individuals, extended MAP file (BIM), data after LD-pruning (156,183 SNPs with X chromosome) and phenotype 

information (FAM). 

  

Page 25 of 39 Molecular Ecology Resources



  

26 
 

References 

Andrades JA, Nimni ME, Becerra J, et al. (1996) Complement proteins are present in developing endochondral bone 505 
and may mediate cartilage cell death and vascularization. Experimental Cell Research 227, 208-213. 

Baroy T, Kresse SH, Skarn M, et al. (2014) Reexpression of LSAMP inhibits tumor growth in a preclinical 

osteosarcoma model. Molecular Cancer 13. 

Berenos C, Ellis PA, Pilkington JG, et al. (2015) Heterogeneity of genetic architecture of body size traits in a free-

living population. Molecular Ecology 24, 1810-1830. 510 

Blake JA, Eppig JT, Kadin JA, et al. (2017) Mouse Genome Database (MGD)-2017: community knowledge resource 

for the laboratory mouse. Nucleic Acids Research 45, D723-D729. 

Bush WS, Moore JH (2012) Chapter 11: Genome-Wide Association Studies. Plos Computational Biology 8. 

Capdevila J, Belmonte JCI (2000) Perspectives on the evolutionary origin of tetrapod limbs. Journal of Experimental 

Zoology 288, 287-303. 515 

Cardelli M, Zirngibl RA, Boetto JF, et al. (2013) Cartilage-Specific Overexpression of ERR gamma Results in 

Chondrodysplasia and Reduced Chondrocyte Proliferation. Plos One 8. 

Cheverud JM (1988) A COMPARISON OF GENETIC AND PHENOTYPIC CORRELATIONS. Evolution 42, 958-

968. 

Cheverud JM, Ehrich TH, Vaughn TT, et al. (2004) Pleiotropic effects on mandibular morphology II: Differential 520 
epistasis and genetic variation in morphological integration. Journal of Experimental Zoology Part B-Molecular and 

Developmental Evolution 302B, 424-435. 

Christians JK, Bingham V, Oliver F, Heath TT, Keightley PD (2003) Characterization of a QTL affecting skeletal 

size in mice. Mammalian Genome 14, 175-183. 

Claude J (2008). Morphometrics with R. Springer Verlag 525 

Cooper KL, Sears KE, Uygur A, et al. (2014) Patterning and post-patterning modes of evolutionary digit loss in 

mammals. Nature 511, 41-U537. 

Deary IJ, Yang J, Davies G, et al. (2012) Genetic contributions to stability and change in intelligence from childhood 

to old age. Nature 482, 212-215. 

Drake TA, Hannani K, Kabo JM, et al. (2001) Genetic loci influencing natural variations in femoral bone 530 
morphometry in mice. Journal of Orthopaedic Research 19, 511-517. 

Eppig JT, Blake JA, Bult CJ, et al. (2012) The Mouse Genome Database (MGD): comprehensive resource for 

genetics and genomics of the laboratory mouse. Nucleic Acids Research 40, D881-D886. 

Flint J, Eskin E (2012) Genome-wide association studies in mice. Nature Reviews Genetics 13, 807-817. 

Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. 535 
Nature Reviews Genetics 6, 271-286. 

Page 26 of 39Molecular Ecology Resources



  

27 
 

Guenet JL, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends 

in Genetics 19, 24-31. 

Hall BK (1995) HOMOLOGY AND EMBRYONIC-DEVELOPMENT. Evolutionary Biology, Vol 28 28, 1-37. 

Hallgrimsson B, Jamniczky H, Young NM, et al. (2009) Deciphering the Palimpsest: Studying the Relationship 540 
Between Morphological Integration and Phenotypic Covariation. Evolutionary Biology 36, 355-376. 

Hallgrimsson B, Willmore K, Hall BK (2002) Canalization, developmental stability, and morphological integration 

in primate limbs. Yearbook of Physical Anthropology, Vol 45 45, 131-158. 

Hansen TF (2006) The evolution of genetic architecture. Annual Review of Ecology Evolution and Systematics 37, 

123-157. 545 

Hansen TF, Armbruster WS, Carlson ML, Pelabon C (2003) Evolvability and genetic constraint in Dalechampia 

blossoms: Genetic correlations and conditional evolvability. Journal of Experimental Zoology Part B-Molecular and 

Developmental Evolution 296B, 23-39. 

Harr B, Karakoc E, Neme R, et al. (2016) Genomic resources for wild populations of the house mouse, Mus 

musculus and its close relative Mus spretus. Scientific Data 3. 550 

Jadhav G, Teguh D, Kenny J, Tickner J, Xu JK (2016) Morc3 mutant mice exhibit reduced cortical area and 

thickness, accompanied by altered haematopoietic stem cells niche and bone cell differentiation. Scientific Reports 6. 

Joeng KS, Schumacher CA, Zylstra-Diegel CR, Long FX, Williams BO (2011) Lrp5 and Lrp6 redundantly control 

skeletal development in the mouse embryo. Developmental Biology 359, 222-229. 

Kang HM, Sul JH, Service SK, et al. (2010) Variance component model to account for sample structure in genome-555 
wide association studies. Nature Genetics 42, 348-U110. 

Kenney-Hunt JP, Vaughn TT, Pletscher LS, et al. (2006) Quantitative trait loci for body size components in mice. 

Mammalian Genome 17, 526-537. 

Kent WJ, Sugnet CW, Furey TS, et al. (2002) The human genome browser at UCSC. Genome Research 12, 996-

1006. 560 

Kolarov NT, Ivanovic A, Kalezic ML (2011) Morphological Integration and Ontogenetic Niche Shift: A Study of 

Crested Newt Limbs. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 316B, 296-

305. 

Lande R (1980) THE GENETIC COVARIANCE BETWEEN CHARACTERS MAINTAINED BY PLEIOTROPIC 

MUTATIONS. Genetics 94, 203-215. 565 

Laurie CC, Nickerson DA, Anderson AD, et al. (2007) Linkage disequilibrium in wild mice. Plos Genetics 3, 1487-

1495. 

Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR (2012) Estimation of pleiotropy between complex diseases 

using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. 

Bioinformatics 28, 2540-2542. 570 

Page 27 of 39 Molecular Ecology Resources



  

28 
 

Logan M (2003) Finger or toe: the molecular basis of limb identity. Development 130, 6401-6410. 

Marchini M, Sparrow LM, Cosman MN, et al. (2014) Impacts of genetic correlation on the independent evolution of 

body mass and skeletal size in mammals. Bmc Evolutionary Biology 14. 

Martin-Serra A, Figueirido B, Perez-Claros JA, Palmqvist P (2015) Patterns of morphological integration in the 

appendicular skeleton of mammalian carnivores. Evolution 69, 321-340. 575 

Moore TY, Organ CL, Edwards SV, et al. (2015) Multiple Phylogenetically Distinct Events Shaped the Evolution of 

Limb Skeletal Morphologies Associated with Bipedalism in the Jerboas. Current Biology 25, 2785-2794. 

Norgard EA, Jarvis JP, Roseman CC, et al. (2009) Replication of long-bone length QTL in the F-9-F-10 LG,SM 

advanced intercross. Mammalian Genome 20, 224-235. 

Norgard EA, Lawson HA, Pletscher LS, et al. (2011) Genetic factors and diet affect long-bone length in the F-34 580 
LG,SM advanced intercross. Mammalian Genome 22, 178-196. 

Norgard EA, Roseman CC, Fawcett GL, et al. (2008) Identification of quantitative trait loci affecting murine long 

bone length in a two-generation intercross of LG/J and SM/J mice. Journal of Bone and Mineral Research 23, 887-

895. 

Pallares LF, Carbonetto P, Gopalakrishnan S, et al. (2015) Mapping of Craniofacial Traits in Outbred Mice Identifies 585 
Major Developmental Genes Involved in Shape Determination. Plos Genetics 11. 

Pallares LF, Harr B, Turner LM, Tautz D (2014) Use of a natural hybrid zone for genomewide association mapping 

of craniofacial traits in the house mouse. Molecular Ecology 23, 5756-5770. 

Pallares LF, Turner LM, Tautz D (2016) Craniofacial shape transition across the house mouse hybrid zone: 

implications for the genetic architecture and evolution of between-species differences. Development Genes and 590 
Evolution 226, 173-186. 

Parmenter MD, Gray MM, Hogan CA, et al. (2016) Genetics of Skeletal Evolution in Unusually Large Mice from 

Gough Island. Genetics 204, 1559-+. 

Pavlicev M, Kenney-Hunt JP, Norgard EA, et al. (2008) Genetic variation in pleiotropy: Differential epistasis as a 

source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62, 199-213. 595 

Pavlicev M, Wagner GP (2012) A model of developmental evolution: selection, pleiotropy and compensation. 

Trends in Ecology & Evolution 27, 316-322. 

Pavlicev M, Wagner GP, Noonan JP, Hallgrimsson B, Cheverud JM (2013) Genomic Correlates of Relationship 

QTL Involved in Fore- versus Hind Limb Divergence in Mice. Genome Biology and Evolution 5, 1926-1936. 

Phifer-Rixey M, Nachman MW (2015) Insights into mammalian biology from the wild house mouse Mus musculus. 600 
eLife 4. 

Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide 

association studies. Nature Reviews Genetics 11, 459-463. 

Page 28 of 39Molecular Ecology Resources



  

29 
 

Purcell S, Neale B, Todd-Brown K, et al. (2007) PLINK: A tool set for whole-genome association and population-

based linkage analyses. American Journal of Human Genetics 81, 559-575. 605 

Rieseberg LH, Buerkle CA (2002) Genetic mapping in hybrid zones. American Naturalist 159, S36-S50. 

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. 

Rolian C, Lieberman DE, Hallgrimsson B (2010) THE COEVOLUTION OF HUMAN HANDS AND FEET. 

Evolution 64, 1558-1568. 610 

Schlötterer C (2015) Genes from scratch - the evolutionary fate of de novo genes. Trends in Genetics 31, 215-219. 

Schmidt M, Fischer MS (2009) MORPHOLOGICAL INTEGRATION IN MAMMALIAN LIMB PROPORTIONS: 

DISSOCIATION BETWEEN FUNCTION AND DEVELOPMENT. Evolution 63, 749-766. 

Schoengraf P, Lambris JD, Recknagel S, et al. (2013) Does complement play a role in bone development and 

regeneration? Immunobiology 218, 1-9. 615 

Schunke AC, Bromiley PA, Tautz D, Thacker NA (2012) TINA manual landmarking tool: software for the precise 

digitization of 3D landmarks. Frontiers in Zoology 9. 

Sheeba CJ, Andrade RP, Palmeirim I (2016) Getting a handle on embryo limb development: Molecular interactions 

driving limb outgrowth and patterning. Seminars in Cell & Developmental Biology 49, 92-101. 

Shi YC, Lin S, Wong IPL, et al. (2010) NPY Neuron-Specific Y2 Receptors Regulate Adipose Tissue and 620 
Trabecular Bone but Not Cortical Bone Homeostasis in Mice. Plos One 5. 

Shubin N, Tabin C, Carroll S (1997) Fossils, genes and the evolution of animal limbs. Nature 388, 639-648. 

Sul JH, Bilow M, Yang WY, et al. (2016) Accounting for Population Structure in Gene-by-Environment Interactions 

in Genome-Wide Association Studies Using Mixed Models. Plos Genetics 12. 

Tautz D, Domazet-Loso T (2011) The evolutionary origin of orphan genes. Nature Reviews Genetics 12, 692-702. 625 

Tickle C (2006) Making digit patterns in the vertebrate limb. Nature Reviews Molecular Cell Biology 7, 45-53. 

Tsutsumi R, Tran MP, Cooper KL (2017) Changing While Staying the Same: Preservation of Structural Continuity 

During Limb Evolution by Developmental Integration. Integrative and Comparative Biology 57, 1269-1280. 

Turner LM, Harr B (2014) Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and 

Dobzhansky-Muller interactions. Elife 3. 630 

Turner LM, Schwahn DJ, Harr B (2012) REDUCED MALE FERTILITY IS COMMON BUT HIGHLY 

VARIABLE IN FORM AND SEVERITY IN A NATURAL HOUSE MOUSE HYBRID ZONE. Evolution 66, 443-

458. 

Visscher PM, Hemani G, Vinkhuyzen AAE, et al. (2014) Statistical Power to Detect Genetic (Co)Variance of 

Complex Traits Using SNP Data in Unrelated Samples. Plos Genetics 10. 635 

Page 29 of 39 Molecular Ecology Resources



  

30 
 

Wheeler HE, Shah KP, Brenner J, et al. (2016) Survey of the Heritability and Sparse Architecture of Gene 

Expression Traits across Human Tissues. Plos Genetics 12. 

Wolf JB, Pomp D, Eisen EJ, Cheverud JM, Leamy LJ (2006) The contribution of epistatic pleiotropy to the genetic 

architecture of covariation among polygenic traits in mice. Evolution & Development 8, 468-476. 

Wray NR, Yang J, Hayes BJ, et al. (2013) Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics 640 
14, 507-515. 

Yang H, Ding YM, Hutchins LN, et al. (2009) A customized and versatile high-density genotyping array for the 

mouse. Nature Methods 6, 663-U655. 

Yang J, Manolio TA, Pasquale LR, et al. (2011a) Genome partitioning of genetic variation for complex traits using 

common SNPs. Nature Genetics 43, 519-U544. 645 

Yang JA, Benyamin B, McEvoy BP, et al. (2010) Common SNPs explain a large proportion of the heritability for 

human height. Nature Genetics 42, 565-U131. 

Yang JA, Lee SH, Goddard ME, Visscher PM (2011b) GCTA: A Tool for Genome-wide Complex Trait Analysis. 

American Journal of Human Genetics 88, 76-82. 

Yezerinac SM, Lougheed SC, Handford P (1992) MEASUREMENT ERROR AND MORPHOMETRIC STUDIES - 650 
STATISTICAL POWER AND OBSERVER EXPERIENCE. Systematic Biology 41, 471-482. 

Young NM (2013) Macroevolutionary Diversity of Amniote Limb Proportions Predicted by Developmental 

Interactions. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 320, 420-427. 

Young NM, Hallgrimsson B (2005) Serial homology and the evolution of mammalian limb covariation structure. 

Evolution 59, 2691-2704. 655 

Zacco A, Cooper V, Chantler PD, et al. (1990) ISOLATION, BIOCHEMICAL-CHARACTERIZATION AND 

ULTRASTRUCTURAL ANALYSIS OF THE LIMBIC SYSTEM-ASSOCIATED MEMBRANE-PROTEIN 

(LAMP), A PROTEIN EXPRESSED BY NEURONS COMPRISING FUNCTIONAL NEURAL CIRCUITS. 

Journal of Neuroscience 10, 73-90. 

Zhou X, Carbonetto P, Stephens M (2013) Polygenic Modeling with Bayesian Sparse Linear Mixed Models. Plos 660 
Genetics 9. 

Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 

44, 821-U136. 

Zhou X, Stephens M (2014) Efficient multivariate linear mixed model algorithms for genome-wide association 

studies. Nature Methods 11, 407-409. 665 

 

Page 30 of 39Molecular Ecology Resources


