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A microsatellite-based multilocus phylogeny of the Drosophila
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Uncovering the genealogy of closely related species
remains a major challenge for phylogenetic
reconstruction. It is unlikely that the phylogeny of a
single gene will represent the phylogeny of a species as
a whole [1], but DNA sequence data across a large
number of loci can be combined in order to obtain a
consensus tree [2]. Long sequences are needed,
however, to minimize the effect of (infrequent) base
substitutions, and sufficient individuals must be
sequenced per species to account for intraspecific
polymorphisms, an overwhelming task using current
DNA sequencing technology. By contrast, microsatellites
are easy to type [3], allowing the analysis of many loci in
multiple individuals. Despite their successful use in
mapping [4,5], behavioural ecology [6] and population
genetics [7], their usefulness for the phylogenetic
reconstruction of closely related taxa has never been
demonstrated, even though microsatellites are often
conserved across species [8–10]. One drawback to
microsatellite use is their high mutation rate (10–4–10–2),
combined with an incomplete understanding of their
mutation patterns. Many microsatellites are available for
Drosophila melanogaster, and they are distributed
throughout the genome [11]. Most can be amplified in
the D. melanogaster species complex [12,13] and have
low mutation rates [14,15]. We show that microsatellite-
specific distance measurements [16] correlate with
other multilocus distances, such as those obtained from
DNA–DNA hybridization data. Thus microsatellites may
provide an ideal tool for building multilocus
phylogenies. Our phylogenetic reconstruction of the 
D. melanogaster complex provides strong evidence that
D. sechellia arose first, followed by a split between 
D. simulans and D. mauritiana. 
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Results and discussion
Under the stepwise mutation model, the squared average
difference in mean repeat number, (δµ)2, is linearly corre-
lated with time [16]. Kimmel et al. [17] noted that the lin-
earity of stepwise distances is independent of the
assumptions of both single repeat-unit step sizes and sym-
metry in mutation rates. Hence, the greatest concerns for
the use of microsatellites in phylogenetic reconstruction
are potential constraints on allele size and whether or not
the mutational properties of loci are maintained across
species [18]. Allele size constraints would result in an
underestimate of genetic divergence between species
[19,20]. As constraints are expected to be more pro-
nounced the more diverged the species are, a nonlinear
relationship between microsatellite-based distances and
other multilocus-based estimates would result. Our
genetic divergence estimates (see Supplementary material
published with this paper on the internet) based on (δµ)2

are, however, highly correlated both with DNA–DNA
hybridization data [21] (r = 0.918, p = 0.036) and with
allozyme data [22] (r = 0.939, p = 0.020). Hence,
microsatellite evolution appears to be relatively uncon-
strained across species within the divergence time of D.
melanogaster and D. simulans, which is estimated to be
2.5–3.5 million years [23]. Recently, we demonstrated [12]
that the mutational properties of microsatellite loci are
conserved between D. melanogaster and D. simulans. Thus,
the two greatest concerns for phylogenetic reconstruction
based on microsatellites — size constraints and differ-
ences in mutational properties — appear to be of minimal
concern within the D. melanogaster species complex.

The distance (δµ)2 can be used to estimate times of
divergence if the average mutation rate of microsatellites
is known. Two recent studies obtained an average
microsatellite mutation rate of 6.3 × 10–6 per generation
in D. melanogaster, which is more than one order of mag-
nitude lower than in mammals [14,15]. Using this
average mutation rate, the estimated divergence time
between D. melanogaster and D. simulans is 130,000 years
(Table 1), a result that is clearly incompatible with previ-
ous divergence estimates of 2.5 – 3.5 million years [23].
Several compounding factors may contribute to this dis-
crepancy, including small violations in the assumptions
required to satisfy the model. For example, there may be
slight constraints because of an increased rate of back
mutations for long alleles [24]. Furthermore, although
variances in repeat number between D. simulans and D.
melanogaster are significantly correlated, only 36% of the
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variation was explained by the regression equation [12].
An additional source of error is the estimated number of
generations per year, which may be inaccurate. The most
important assumption, however, is the mutation rate
itself, which may be overestimated as a result of the
experimental design of the studies measuring mutation
rates in D. melanogaster; both studies used a set of lines
with identical alleles, which could have resulted in an
over-representation of hypervariable alleles causing a
higher mutation rate estimate [14]. Given all these
uncertainties, divergence times based on (δµ)2 should be
viewed with caution.

Genealogy of the D. melanogaster complex
Genetic distances between species were calculated by
various methods including (δµ)2 [16], Nei’s distance’s
[25], and the proportion of shared alleles. Irrespective of
the distance measurement used, all UPGMA (unweighted
pair-group method using an arithmetic average) and
neighbor-joining trees supported the same grouping, with
D. melanogaster depicted as the most distantly related
species. In the remaining clade, D. sechellia arose first, fol-
lowed by the split between D. simulans and D. mauritiana.
To test the consistency of this result, we constructed an
allele-sharing tree of individuals, a method which has
been successfully used for the reconstruction of the phylo-
genetic relationships of human populations based on
microsatellites [26]. The UPGMA tree in Figure 1 shows
that all individuals from the same species cluster together.
The major difference between the UPGMA and a neigh-
bor-joining tree is that a single D. simulans individual is
not clustering with the other 31 D. simulans individuals
but instead forms a sister group to D. mauritiana and the
remaining D. simulans individuals. The bootstrap support
for each species ranges from 84 to 100%, with D. simulans
having the lowest bootstrap support (Figure 1).

Variation in the DNA region flanking microsatellites is
well described for cross-species comparisons [9,27,28].
Insertions or deletions in flanking regions of one species
can influence the estimated number of repeats if the DNA
sequence is known only for another species. To test
whether length variation in the flanking regions affects
the topology of the tree of individuals, we used the PCR-
product length rather than the number of repeats for phy-
logenetic reconstruction; interestingly, this resulted in a
similar grouping of individuals, with a comparable boot-
strap support. This is encouraging because it suggests that
the microsatellite-based phylogeny is sufficiently robust to
mask the phylogenetic noise introduced by variation in
the flanking regions. Further investigations will reveal
whether phylogenies with a weaker phylogenetic signal
could also be reliably reconstructed if PCR-product length
is used rather than repeat number.

The species phylogeny of the D. melanogaster complex is
far from being resolved. Recently, a set of 12 single-copy
genes and a ribosomal spacer sequence (ITS) were used to
investigate discrepancies between individual gene trees in
the D. melanogaster species complex [29]. Although all
genes demonstrated the sister-group status of D.
melanogaster, all three possible groupings of the D. simulans
clade were supported by different genes. The combined
data set from all 13 chromosomal regions provided strong
evidence that D. simulans arose first, followed by a split
between D. mauritiana and D. sechellia. Similarly,
DNA–DNA hybridization data [21] support the same
topology. Most studies did not use multiple individuals
from each species, and studies which did so reported a dif-
ferent pattern: a series of papers using six individuals for
each species showed for some genes that D. sechellia arose
first, followed by the split between D. simulans and D.
mauritiana [30–33]. Furthermore, Kliman and Hey [32]
demonstrated that some alleles of the period gene are
shared between D. simulans and D. mauritiana, a result
which also favors the closer phylogenetic relationship of
these species. Solignac and Monnerot [34] showed with
restriction fragment length polymorphism analysis of mito-
chondrial DNA, that D. simulans and D. mauritiana have
multiple mitochondrial DNA haplotypes and that the hap-
lotypes of both these species cluster together. Allozyme
data also show that D. simulans and D. mauritiana are closer
to each other than either is to D. sechellia [35].

Much thought has been given to the hypothesis that
D. simulans represents a large population with very old lin-
eages which are still segregating. Our data set, however,
provides very little support for this hypothesis. In a neigh-
bor-joining tree of individuals, only a single individual of
D. simulans split before the branch leading to
D. mauritiana. The average genetic distance (based on the
proportion of shared alleles) between individuals is 0.80
for D. simulans and 0.75 for D. melanogaster. The unimodal
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Table 1

Expected time of divergence, in millions of years, for various
mutation rates.

Pairwise Mutation rate
comparison 
of species (δµ)2 10–5 6.3 × 10–6 10–6 5 × 10–7 10–7 10–8

mel/sec 21.574 0.11 0.17 1.08 2.2 10.8 107.9

mel/mau 17.936 0.09 0.14 0.90 1.8 9.0 89.7

mel/sim 15.9795 0.08 0.13 0.80 1.6 8.0 79.9

mau/sec 12.5221 0.06 0.01 0.63 1.3 6.3 62.6

sim/sec 11.6995 0.06 0.09 0.58 1.2 5.8 58.5

sim/mau 5.1765 0.03 0.04 0.26 0.5 2.6 25.9

The time of divergence was calculated on the basis of an assumption
of 10 generations per year. The species names are abbreviated to their
first three letters.



distribution of the pairwise distances of D. simulans indi-
viduals suggests that the greater average genetic distance
of D. simulans can not be explained by the presence of two
different lineages, as this would have resulted in a bimodal
distribution. Hence, a larger effective population size of D.
simulans is a more likely explanation for the higher average
genetic distance in our data set. As we included individu-
als from five different populations, it is unlikely that our
results can be ascribed to a non-representative sampling 
of D. simulans.

While our results indicate that microsatellites are adequate
for phylogenetic reconstruction, it should be mentioned
that the obtained tree topologies differed between the
various multilocus distances. The topologies reported for
allozymes and DNA–DNA hybridization were not statisti-
cally supported, however, [21,22]. Furthermore, out of 33
allozyme loci surveyed, 16 showed no variation in the D.
melanogaster species complex, whereas all of the 39
microsatellite loci did so. Hence, the larger number of
informative loci probably explains why our study found a

robust branching pattern and the author of the allozyme
study had to conclude that the chronology of the specia-
tion events remains unresolved [22].

The great benefit of microsatellites for the reconstruction
of phylogenies of closely related species is their mutation
rate. Although base substitutions are highly likely to be
shared between two closely related species, such as D. sim-
ulans and D. mauritiana [36], microsatellite alleles are less
likely to be shared between species because of their
higher mutation rate. New mutations would be expected
to have occurred before the lineage sorting of DNA
sequences is completed. Hence, a less contradictory signal
is to be expected when microsatellite data combined over
several genomic regions are used for phylogenetic recon-
struction of closely related species.

A general difference between the present study and
others using microsatellites to reconstruct phylogenies
[26] is that we used microsatellites with low mutation
rates, so fewer mutational events are likely to have
occurred since the split of two species. If the mutational
behavior of some of the loci studied deviates from the
assumed pattern, then microsatellites with high mutation
rates are more likely to result in an inaccurate phyloge-
netic reconstruction. Our conclusions about the appropri-
ateness of microsatellites for phylogenetic reconstructions
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Figure 1

A tree of individuals based on microsatellites. For D. melanogaster, F1
individuals from freshly collected females were typed and both alleles
analyzed; 10 lines were from France, 10 from Russia, and 10 from
Austria. For all other species, isofemale lines were maintained in the
laboratory and so a single allele was randomly selected from each
individual. D. simulans were provided by M. Turelli: United States, 6
lines; Mexico, 6 lines; New Caledonia, 7 lines; Columbia, 7 lines; and
Zimbabwe, 6 lines. D. mauritiana lines (22) and D. sechellia (5) lines
were obtained from Bowling Green stock center. The remaining D.
sechellia lines were collected on various islands of the Seychelles, with
most samples originating from the major island, Mahé. Thirty-nine
dinucleotide microsatellite loci were typed in all four species. Thirty-two
loci were developed from D. melanogaster and 7 from D. sechellia
(B.H., B. Zangerl, M. Imhof, G.B., C.S., unpublished observations).
Radioactive microsatellite typing essentially followed procedures given
by Schlötterer [3]. After completing 30 PCR cycles, the products were
incubated for 50 min at 72°C to assure completion of the terminal
transferase activity of the Taq polymerase. Electrophoresis was carried
out on 7% polyacrylamide gels with 32% formamide and 5.6 M urea to
assure complete denaturation of the PCR products. DNA fragments
were sized by using a (GT/CA)n slippage ladder, which produced a
band every second base-pair covering a size range from 50 to 230 base
pairs [37]. Absolute sizes were determined by running a size reference
alongside products. The repeat number for all loci was inferred
separately for each species either by using sequences available from
GenBank or by sequencing a single allele. If DNA sequencing detected
a point mutation in the microsatellite, only the number of uninterrupted
repeats in the longest contiguous stretch was counted. Genetic
distances were determined using Microsat software [38]. UPGMA and
neighbor-joining trees were reconstructed with PHYLIP [39] and tree
files were graphically represented using TREEVIEW [40].



may be strongly influenced by the low microsatellite
mutation rate of Drosophila. As repeat number is a good
predictor of a microsatellite’s mutation rate, we suggest
that the use of microsatellites with a small repeat number
should be a successful strategy for phylogenetic recon-
struction in other species.
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S1Supplementary material

Table S1

Mean pairwise distances (determined by 100 bootstrap
replicates).

(δµ)2

mau sec sim
sec 54.171
sim 21.538 48.961
mel 72.630 86.606 66.087

Nei’s distance
mau sec sim

sec 1.393
sim 0.593 1.153
mel 2.350 2.100 1.982

Proportion of shared alleles
mau sec sim

sec 1.675
sim 0.919 1.484
mel 2.484 2.333 2.068

The species names are abbreviated to their first three letters.
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