9 research outputs found

    Evolution expérimentale et spécialisation dans le paysage adaptatif d'un gradient environnemental

    No full text
    Today more than ever, it is crucial to anticipate and understand the evolutionary responses of living organisms faced with heterogeneous and unstable habitats. But to what extent is this possible? To reproduce an entire evolutionary trajectory, we must first describe the “material” available for adaptation (e.g. the phenotypic effects associated with the existing and novel genetic variability), and second describe the way evolutionary forces, shaped by the ecological context, result in specific “assemblies” of this material. At its simplest, this evolutionary process can be described by several cycles of mutation-selection events, leading to the adaptation of a population to an environment. This process is reflected in the evolutionary trajectories of bacterial lineages undergoing controlled experimental evolution in the lab. Concurrently, adaptive (phenotypic) landscape models, and especially Fisher’s geometrical model of adaptation, are powerful tools to formulate general predictions, which can then be tested on such evolutionary trajectories. However, they remain highly theoretical, and are widely conceived in a simple ecological context. In this thesis, we identified the (mutational and selective) determinants of the evolutionary trajectories of bacterial lines adapting to various environmental contexts. A first set of results regards evolution along a gradient of antibiotic doses, and their relevance is highlighted by experimental validation and by the reconstruction of the underlying adaptive landscape. A second experimental part integrates a biotic component (another bacteria) to the same environmental context. The evolutionary processes acting throughout the resulting long-term coevolution – maintained by frequency-dependent selection – are studied.De nos jours plus que jamais, il est nĂ©cessaire d’anticiper et de comprendre les rĂ©ponses Ă©volutives des organismes vivants, face Ă  des habitats instables et hĂ©tĂ©rogĂšnes. Mais Ă  quel point cela est-il possible ? Reproduire l’ensemble du dĂ©roulĂ© d’une trajectoire Ă©volutive nĂ©cessite de pouvoir dĂ©crire, d’une part, le « matĂ©riel » disponible pour s’adapter (c’est-Ă -dire les effets phĂ©notypiques associĂ©s Ă  la variabilitĂ© gĂ©nĂ©tique produite), d’autre part, comment agissent les forces Ă©volutives, associĂ©es Ă  un contexte Ă©cologique, pour aboutir Ă  un certain « assemblage » de ce matĂ©riel. Dans sa version la plus simple, ce processus Ă©volutif peut-ĂȘtre dĂ©crit par plusieurs cycles d’évĂšnements de mutations-sĂ©lection conduisant Ă  l’adaptation d’une population Ă  son environnement. Cette dynamique correspond assez bien Ă  celle qui est dĂ©crite par les populations bactĂ©riennes dans les expĂ©riences d’évolution contrĂŽlĂ©es en laboratoire. ParallĂšlement, les modĂšles de paysages adaptatifs (phĂ©notypiques), et en particulier le modĂšle gĂ©omĂ©trique de Fisher, sont des outils trĂšs puissants pour formuler des prĂ©dictions gĂ©nĂ©rales et quantitativement testables sur ces trajectoires Ă©volutives. Cependant, ils restent trĂšs thĂ©oriques et ont Ă©tĂ© largement pensĂ©s dans un contexte Ă©cologique simplifiĂ©. Au cours de cette thĂšse, nous avons identifiĂ© les dĂ©terminants (mutationnels et sĂ©lectifs) des trajectoires Ă©volutives Ă  long terme de populations bactĂ©riennes s’adaptant dans diffĂ©rents contextes environnementaux. Une premiĂšre partie des rĂ©sultats est mise en lumiĂšre par la validation expĂ©rimentale et la reconstruction de la topographie du paysage adaptatif gĂ©nĂ©rĂ© par diffĂ©rentes doses d’un antibiotique, le long d’un gradient. Une deuxiĂšme partie expĂ©rimentale vise Ă  intĂ©grer une composante biotique (une autre bactĂ©rie) Ă  ce mĂȘme contexte environnemental. Les processus Ă©volutifs intervenant au cours d’une coĂ©volution Ă  long terme maintenue par sĂ©lection frĂ©quence-dĂ©pendante, y sont Ă©tudiĂ©s

    Experimental evolution and specialization in the adaptive landscape of an environmental gradient

    No full text
    De nos jours plus que jamais, il est nĂ©cessaire d’anticiper et de comprendre les rĂ©ponses Ă©volutives des organismes vivants, face Ă  des habitats instables et hĂ©tĂ©rogĂšnes. Mais Ă  quel point cela est-il possible ? Reproduire l’ensemble du dĂ©roulĂ© d’une trajectoire Ă©volutive nĂ©cessite de pouvoir dĂ©crire, d’une part, le « matĂ©riel » disponible pour s’adapter (c’est-Ă -dire les effets phĂ©notypiques associĂ©s Ă  la variabilitĂ© gĂ©nĂ©tique produite), d’autre part, comment agissent les forces Ă©volutives, associĂ©es Ă  un contexte Ă©cologique, pour aboutir Ă  un certain « assemblage » de ce matĂ©riel. Dans sa version la plus simple, ce processus Ă©volutif peut-ĂȘtre dĂ©crit par plusieurs cycles d’évĂšnements de mutations-sĂ©lection conduisant Ă  l’adaptation d’une population Ă  son environnement. Cette dynamique correspond assez bien Ă  celle qui est dĂ©crite par les populations bactĂ©riennes dans les expĂ©riences d’évolution contrĂŽlĂ©es en laboratoire. ParallĂšlement, les modĂšles de paysages adaptatifs (phĂ©notypiques), et en particulier le modĂšle gĂ©omĂ©trique de Fisher, sont des outils trĂšs puissants pour formuler des prĂ©dictions gĂ©nĂ©rales et quantitativement testables sur ces trajectoires Ă©volutives. Cependant, ils restent trĂšs thĂ©oriques et ont Ă©tĂ© largement pensĂ©s dans un contexte Ă©cologique simplifiĂ©. Au cours de cette thĂšse, nous avons identifiĂ© les dĂ©terminants (mutationnels et sĂ©lectifs) des trajectoires Ă©volutives Ă  long terme de populations bactĂ©riennes s’adaptant dans diffĂ©rents contextes environnementaux. Une premiĂšre partie des rĂ©sultats est mise en lumiĂšre par la validation expĂ©rimentale et la reconstruction de la topographie du paysage adaptatif gĂ©nĂ©rĂ© par diffĂ©rentes doses d’un antibiotique, le long d’un gradient. Une deuxiĂšme partie expĂ©rimentale vise Ă  intĂ©grer une composante biotique (une autre bactĂ©rie) Ă  ce mĂȘme contexte environnemental. Les processus Ă©volutifs intervenant au cours d’une coĂ©volution Ă  long terme maintenue par sĂ©lection frĂ©quence-dĂ©pendante, y sont Ă©tudiĂ©s.Today more than ever, it is crucial to anticipate and understand the evolutionary responses of living organisms faced with heterogeneous and unstable habitats. But to what extent is this possible? To reproduce an entire evolutionary trajectory, we must first describe the “material” available for adaptation (e.g. the phenotypic effects associated with the existing and novel genetic variability), and second describe the way evolutionary forces, shaped by the ecological context, result in specific “assemblies” of this material. At its simplest, this evolutionary process can be described by several cycles of mutation-selection events, leading to the adaptation of a population to an environment. This process is reflected in the evolutionary trajectories of bacterial lineages undergoing controlled experimental evolution in the lab. Concurrently, adaptive (phenotypic) landscape models, and especially Fisher’s geometrical model of adaptation, are powerful tools to formulate general predictions, which can then be tested on such evolutionary trajectories. However, they remain highly theoretical, and are widely conceived in a simple ecological context. In this thesis, we identified the (mutational and selective) determinants of the evolutionary trajectories of bacterial lines adapting to various environmental contexts. A first set of results regards evolution along a gradient of antibiotic doses, and their relevance is highlighted by experimental validation and by the reconstruction of the underlying adaptive landscape. A second experimental part integrates a biotic component (another bacteria) to the same environmental context. The evolutionary processes acting throughout the resulting long-term coevolution – maintained by frequency-dependent selection – are studied

    Evolution of bacteria specialization along an antibiotic dose gradient

    No full text
    International audienceAntibiotic and pesticide resistance of pathogens are major and pressing worldwide issues. Resistance evolution is often considered in simplified ecological contexts: treated versus nontreated environments. In contrast, antibiotic usually present important dose gradients: from ecosystems to hospitals to polluted soils, in treated patients across tissues. However, we do not know whether adaptation to low or high doses involves different phenotypic traits, and whether these traits trade-off with each other. In this study, we investigated the occurrence of such fitness trade-offs along a dose gradient by evolving experimentally resistant lines of Escherichia coli at different antibiotic concentrations for similar to 400 generations. Our results reveal fast evolution toward specialization following the first mutational step toward resistance, along with pervasive trade-offs among different evolution doses. We found clear and regular fitness patterns of specialization, which converged rapidly from different initial starting points. These findings are consistent with a simple fitness peak shift model as described by the classical evolutionary ecology theory of adaptation across environmental gradients. We also found that the fitness costs of resistance tend to be compensated through time at low doses whereas they increase through time at higher doses. This cost evolution follows a linear trend with the log-dose of antibiotic along the gradient. These results suggest a general explanation for the variability of the fitness costs of resistance and their evolution. Overall, these findings call for more realistic models of resistance management incorporating dose-specialization

    Cost of resistance: an unreasonably expensive concept

    Get PDF
    International audienceThe concept of “cost of resistance” has been very important for decades, for fundamental reasons (theory of adaptation), with a wide range of applications for the genetics and genomics of resistance: resistance to antibiotics, insecticide, herbicide, fungicides; resistance to chemotherapy in cancer research; coevolution between all kinds of parasites and their hosts. This paper reviews this history, including latest developments, shows the interest of the idea but also challenges the usefulness and limits of this widely used concept, based on the most recent development of adaptation theory. It explains how the concept can be flawed and how this can impede research efforts in the field of resistance at large, including all applied aspects. In particular, it would be clearer to simply measure the fitness effects of mutations across environments and to better distinguish those effects from ‘pleiotropic effects’ of those mutations. Overall, we show how to correct the concept, and how this correction helps to better understand the wealth of data that has accumulated in recent years. The main points are: 1. The concept of «cost of resistance» needs to be carefully used, to avoid misconceptions, false paradox and flawed applications. The recent developments in adaptation theory are useful to clarify this. 2. “Cost of resistance” and pleiotropy have to be distinguished. More than one trait is required to discuss pleiotropy. Resistance evolution must at least involve the modification of one trait. If there is an irreducible trade-off on that trait between environments with and without drug, it creates a fitness effect that is not due to pleiotropy. Pleiotropic effects can, but need not, occur in addition. 3. “Cost of resistance” must depend on the pair of environments considered with and without drug. Hence, there are as many measures of cost as there are environments without drug. If the focal genotype is not well adapted to one focal environment, it is relatively easy to observe “negative” costs of resistance. There is nothing surprising about this, and it does not indicate an absence of trade-off. 4. Environments with drug can differ according to the dose. It may be more informative to measure the possible trade-offs among all doses than to focus exclusively on the fitness contrast between the presence and the absence of drug

    Fisher’s geometrical model and the mutational patterns of antibiotic resistance across dose gradients

    No full text
    BGPI : Ă©quipe 2International audienceFisher's geometrical model (FGM) has been widely used to depict the fitness effects of mutations. It is a general model with few underlying assumptions that gives a large and comprehensive view of adaptive processes. It is thus attractive in several situations, e.g. adaptation to antibiotics, but comes with limitations, so that more mechanistic approaches are often preferred to interpret experimental data. It might be possible however to extend FGM assumptions to better account for mutational data. This is theoretically challenging in the context of antibiotic resistance because resistance mutations are assumed to be rare. In this paper, we show with Escherichia coli how the fitness effects of resistance mutations screened at different doses of nalidixic acid vary across a dose-gradient. We found experimental patterns qualitatively consistent with the basic FGM (rate of resistance across doses, gamma distributed costs) but also unexpected patterns such as a decreasing mean cost of resistance with increasing screen-dose. We show how different extensions involving mutational modules and variations in trait covariance across environments, can be discriminated based on these data. Overall, simple extensions of the FGM accounted well for complex mutational effects of resistance mutation across antibiotic doses

    Competitions experiments and gyrA mutations

    No full text
    In this file, you can find: tab 1) legend for tables, tab 2) raw data of fluorescence from competition experiments and estimations of selection coefficients, tab 3) mutations detected in the gyrA gene associated with each mutant, tab 4) raw data for calibration curves, tab 5) primers sequences for gyrA gen

    No evidence for genetic differentiation in juvenile traits between Belgian and French populations of the invasive tree Robinia pseudoacacia

    Get PDF
    Background – The role of evolution in biological invasion studies is often overlooked. In order to evaluate the evolutionary mechanisms behind invasiveness, both quantitative and population genetics studies are underway on Robinia pseudoacacia L., one of the worst invasive tree species in Europe.Methods – A controlled experiment was set up using 2000 seeds from ten populations in Southern France and ten populations in Belgium. Seedlings were cultivated in two climatic chambers set at 18°C and 22°C. Early development life history traits (e.g. seedling phenology) and functional traits (e.g. growth rates) were monitored. Genotyping using SNP markers was used to evaluate the genetic differentiation among the populations and a QST – FST comparison was done in order to test for the role of selection.Results – Populations exhibited a strong plasticity to temperature for all measured traits, the warmer environment being generally more suitable, irrespective of their origin. No significant departure from neutral evolution was evidenced by the QST – FST comparisons, although we found a slightly significant differentiation at the molecular level. Conclusion – Plasticity for the functional and life history traits was evidenced but no genetic interaction suggesting no possible evolution of plasticity at those traits. Moreover, no support for genetic differentiation and local adaptation was found among studied populations within invasive range, raising two main questions: first, what is the role of selection on functional and life-history traits; and second, is the elapsed time since first introduction sufficient to allow evolution and local adaptation

    La géoarchéologie française au xxie siÚcle

    No full text
    La gĂ©oarchĂ©ologie s’impose aujourd’hui comme une composante majeure de la comprĂ©hension des interactions complexes SociĂ©tĂ©s-Environnement sur le temps long. Cet ouvrage, le premier du genre, dresse un bilan des recherches gĂ©oarchĂ©ologiques conduites dans les universitĂ©s, au CNRS (Centre National de la Recherche Scientifique), Ă  l’INRAP (Institut National de Recherches ArchĂ©ologiques PrĂ©ventives) et dans les SRA (Services RĂ©gionaux de l’ArchĂ©ologie) depuis trente ans. Les cinq parties de l’ouvrage Ă©tayent l’ensemble des champs d’application de la gĂ©oarchĂ©ologie française : « PalĂ©oenvironnements, biogĂ©ographie et paysages » ; « Les hydrosystĂšmes fluviaux, entre climat et anthropisation » ; « Alluvionnement, peuplement, stratĂ©gies et formes d’adaptation » ; « Ressources en eau, risque et amĂ©nagement » ; « De la mobilitĂ© du trait de cĂŽte Ă  la contrainte portuaire ». Une attention particuliĂšre est accordĂ©e aux attendus Ă©pistĂ©mologiques, aux concepts et aux mĂ©thodes d’investigation sur le « terrain » de la gĂ©oarchĂ©ologie moderne, par essence interdisciplinaire. Les sites archĂ©ologiques sont Ă©tudiĂ©s dans des contextes environnementaux variĂ©s : fluvial, deltaĂŻque et littoral, zones humides, Ăźles et environnements urbains. Chaque « grand chantier » prĂ©sentĂ©, qu’il se situe en France ou Ă  l’étranger (Albanie, Égypte, GrĂšce, Italie, Luxembourg, Mali, Maroc, Turquie), fait Ă©tat des derniĂšres dĂ©couvertes, des mĂ©thodes les plus pertinentes, des synthĂšses les plus Ă  jour, des hypothĂšses les plus solides sur les interactions spĂ©cifiques entre l’Homme et son environnement depuis des milliers d’annĂ©es. Conçu Ă  partir d’une pratique forte du terrain, de l’enseignement et de la diffusion scientifique, ce livre s’adresse Ă  un large public : enseignants, chercheurs, Ă©tudiants L-M-D, archĂ©ologie prĂ©ventive, conservatoires du patrimoine, musĂ©es archĂ©ologiques, grand public curieux de connaissances pluridisciplinaires de son patrimoine archĂ©ologique replacĂ© dans son contexte environnemental. L’étudiant y trouvera un vĂ©ritable support de cours dispensĂ©s Ă  l’UniversitĂ© et dans les Ă©coles d’urbanisme, d’architecture et de paysage, le chercheur disposera d’un ouvrage exhaustif mettant en exergue des mĂ©thodes choisies et transposables Ă  ses propres sites d’étude. L’ouvrage fait Ă©galement valoir un engagement thĂ©orique, des choix d’approche et une perspective dĂ©bouchant sur une meilleure connaissance de nos « patrimoines territoriaux », dĂ©sormais pris en compte dans toute dĂ©marche d’amĂ©nagement (archĂ©ologie prĂ©ventive). Cette connaissance est devenue « l’incontournable » du gĂ©ographe, de l’urbaniste, de l’architecte, du paysagiste, du responsable de projet d’amĂ©nagement
    corecore