892 research outputs found

    Bankruptcy

    Get PDF

    ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI SISWA DALAM PEMILIHAN PROGRAM KEAHLIAN DI SMK PGRI TANJUNG RAJA

    Get PDF
    The objective of the research was to find out factors contributing students in choosing the vocational programs at SMK PGRI Tanjung Raja. The method of the research used was quantitative descriptive. The data was collected by using documentation, questionnaire, and skill test. The sample of the research was 45 students. The result of the research indicated that factors contributing students in choosing vocational programs at SMK PGRI Tanjung Raja came from internal and external factors. The internal factors included skills with sufficient criteria of assessment or contributed to the average percentage at 80.33%. It also included the skills with high criteria of assessment or contributed to the average percentage at 85.5%. The external factors included the result of entry score with sufficient criteria of assessment or contributed to the average percentage at 74.42%. Parents were also the external factors with high criteria of assessment or contributed to the average percentage at 87.47%. In other words, both internal and external factors had high criteria of assessment contributing students in choosing vocational programs in SMK PGRI Tanjung Raja which had average percentage at 81.93%

    PENGENALAN AKSARA BATAK TOBA MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN LEARNING VECTOR QUANTIZATION

    Get PDF
    M. IKHSAN HARLIN PRATAMA, (2021): PENGENALAN AKSARA BATAK TOBA MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN LEARNING VECTOR QUANTIZATION Indonesia memiliki berbagai ragam kebudayaan berdasarkan UNESCO, bahwa budaya memiliki peran penting dalam sebagian besar Tujuan Pembangunan Berkelanjutan (SDGs) yang berfokus pada sektor pendidikan dan ilmu pengetahuan yang berkualitas khususnya di daerah batak dengan mengenal sebuah Aksara (Tulisan) Batak Toba. Kurangnya pemahaman dalam mengenali huruf dasar Ina Ni Surat aksara batak kerap menjadi kekeliruan dalam mengenali dan membaca tulisan, maka dibangun sebuah aplikasi untuk mengidentifikasi tulisan Ina Ni Surat aksara batak toba. Pada penelitian ini, proses ekstraksi ciri yang digunakan adalah metode Modified Direction Feature (MDF) dan proses klasifikasi yang digunakan metode Learning Vector Quantization (LVQ). Pengujian dilakukan berdasarkan data merata yaitu, pengujian matriks citra dengan ukuran 120x120 piksel, dan pengujian nilai/learning rate 0.1, 0.01, 0.03, 0.05, 0.07, 0.09, 0.001, 0.003, 0.005, 0.007 dan 0.009. Dari hasil pengujian yang dilakukan adalah aplikasi mampu mengenali citra tulisan ina ni surat batak toba dengan akurasi terbaik sebesar 87% menggunakan pembagian data 70:30 dengan learning rate 0.1, 0.07, dan 0.09. Kata Kunci: Aksara Batak Toba, Ekstraksi Ciri, Learning Vector Quantization (LVQ), Modified Direction Feature (MDF), Thinnin

    Working with simple machines

    Get PDF
    A set of examples is provided that illustrate the use of work as applied to simple machines. The ramp, pulley, lever and hydraulic press are common experiences in the life of a student and their theoretical analysis therefore makes the abstract concept of work more real. The mechanical advantage of each of these systems is also discussed so that students can evaluate their usefulness as machines.Comment: 9 pages, 4 figure

    Designing visual management in manufacturing from a user perspective

    Get PDF
    Many organisations use daily meetings, whiteboards and an information system for employee intra-communication. While Operation Management research is often management centred, Human Centred Design, instead, takes a user’s perspective. This research aims to reflect upon and describe a method, applied in practice in a double case study within manufacturing, on how to (re-)design meetings and visual management boards, and what type of information and key performance indicators are most relevant for the personnel. The paper proposes a lean Kata-improvement inspired design method, which takes the personnel’s perspective on design of daily visual management

    Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.A deep eutectic solvent composed of choline chloride (ChCl) and urea has been recently introduced as a promising cellulose compatible medium that enables e.g. fibre spinning. This paper clarifies the influence of such a solvent system on the structure and chemical composition of the cellulosic pulp fibres. Special emphasis was placed on the probable alterations of the chemical composition due to the dissolution of the fibre components and/or due to the chemical derivatisation taking place during the DES treatment. Possible changes in fibre morphology were studied with atomic force microscopy and scanning electron microscopy. Chemical compositions of pulp fibres were determined from the carbohydrate content, and by analysing the elemental content. Detailed structural characterisation of the fibres was carried out using spectroscopic methods; namely X-Ray Photoelectron Spectroscopy, solid state Nuclear Magnetic Resonance and Raman Spectroscopy. No changes with respect to fibre morphology were revealed and negligible changes in the carbohydrate composition were noted. The most significant change was related to the nitrogen content of the pulp after the DES treatment. Comprehensive examination using spectroscopic methods revealed that the nitrogen originated from strongly bound ChCl residuals that could not be removed with a mild ethanol washing procedure. According to Raman spectroscopic data and methylene blue adsorption tests, the cationic groups of ChCl seems to be attached to the anionic groups of pulp by electrostatic forces. These findings will facilitate the efficient utilisation of DES as a cellulose compatible medium without significantly affecting the native fibre structure.The authors acknowledge the Finnish Funding Agency for Innovation (TEKES) for funding the work via Design Driven Value Chains in the World of Cellulose 2.0 project. The Academy of Finland (Project ID 300367) is acknowledged for enabling the research mobility of T.T. to the University of Exeter, UK. Unto Tapper (VTT) is thanked for the SEM imaging, Atte Mikkelson, Ritva Heinonen and Marita Ikonen (VTT) for the chemical analysis and Robertus Nugroho (Aalto University) for the AFM imaging

    <i>C-elegans</i> model identifies genetic modifiers of alpha-synuclein inclusion formation during aging

    Get PDF
    Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a &lt;i&gt;C-elegans&lt;/i&gt; model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha-synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders

    Structure of 13^{13}Be probed via secondary beam reactions

    Full text link
    The low-lying level structure of the unbound neutron-rich nucleus 13^{13}Be has been investigated via breakup on a carbon target of secondary beams of 14,15^{14,15}B at 35 MeV/nucleon. The coincident detection of the beam velocity 12^{12}Be fragments and neutrons permitted the invariant mass of the 12^{12}Be+nn and 12^{12}Be+nn+nn systems to be reconstructed. In the case of the breakup of 15^{15}B, a very narrow structure at threshold was observed in the 12^{12}Be+nn channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting ss-wave virtual state in 13^{13}Be, analysis here of the 12^{12}Be+nn+nn events demonstrated that this was an artifact resulting from the sequential-decay of the 14^{14}Be(2+^+) state. Single-proton removal from 14^{14}B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)ω\hbar\omega shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced Jπ^\pi=1/2+^+ and 5/2+^+ resonances (Er_r=0.40±\pm0.03 and 0.850.11+0.15^{+0.15}_{-0.11} MeV), whilst the broad higher-lying feature is a second 5/2+^+ level (Er_r=2.35±\pm0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2+^+ and 1/2^- levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical Review

    Biodegradable nanomats produced by electrospinning : expanding multifunctionality and potential for tissue engineering

    Get PDF
    With increasing interest in nanotechnology, development of nanofibers (n-fibers) by using the technique of electrospinning is gaining new momentum. Among important potential applications of n-fiber-based structures, scaffolds for tissue-engineering represent an advancing front. Nanoscaffolds (n-scaffolds) are closer to natural extracellular matrix (ECM) and its nanoscale fibrous structure. Although the technique of electrospinning is relatively old, various improvements have been made in the last decades to explore the spinning of submicron fibers from biodegradable polymers and to develop also multifunctional drug-releasing and bioactive scaffolds. Various factors can affect the properties of resulting nanostructures that can be classified into three main categories, namely: (1) Substrate related, (2) Apparatus related, and (3) Environment related factors. Developed n-scaffolds were tested for their cytocompatibility using different cell models and were seeded with cells for to develop tissue engineering constructs. Most importantly, studies have looked at the potential of using n-scaffolds for the development of blood vessels. There is a large area ahead for further applications and development of the field. For instance, multifunctional scaffolds that can be used as controlled delivery system do have a potential and have yet to be investigated for engineering of various tissues. So far, in vivo data on n-scaffolds are scarce, but in future reports are expected to emerge. With the convergence of the fields of nanotechnology, drug release and tissue engineering, new solutions could be found for the current limitations of tissue engineering scaffolds, which may enhance their functionality upon in vivo implantation. In this paper electrospinning process, factors affecting it, used polymers, developed n-scaffolds and their characterization are reviewed with focus on application in tissue engineering
    corecore