672 research outputs found
A 40-Year Cohort Study of Evolving Hypothalamic Dysfunction in Infants and Young Children (<3 years) with Optic Pathway Gliomas
Despite high survival, paediatric optic pathway hypothalamic gliomas are associated with significant morbidity and late mortality. Those youngest at presentation have the worst outcomes. We aimed to assess presenting disease, tumour location, and treatment factors implicated in the evolution of neuroendocrine, metabolic, and neurobehavioural morbidity in 90 infants/children diagnosed before their third birthday and followed-up for 9.5 years (range 0.5–25.0). A total of 52 (57.8%) patients experienced endo-metabolic dysfunction (EMD), the large majority (46) of whom had hypothalamic involvement (H+) and lower endocrine event-free survival (EEFS) rates. EMD was greatly increased by a diencephalic syndrome presentation (85.2% vs. 46%, p = 0.001)), H+ (OR 6.1 95% CI 1.7–21.7, p 0.005), radiotherapy (OR 16.2, 95% CI 1.7–158.6, p = 0.017) and surgery (OR 4.8 95% CI 1.3–17.2, p = 0.015), all associated with anterior pituitary disorders. Obesity occurred in 25% of cases and was clustered with the endocrinopathies. Neurobehavioural deficits occurred in over half (52) of the cohort and were associated with H+ (OR 2.5 95% C.I. 1.1–5.9, p = 0.043) and radiotherapy (OR 23.1 C.I. 2.9–182, p = 0.003). Very young children with OPHG carry a high risk of endo-metabolic and neurobehavioural comorbidities which deserve better understanding and timely/parallel support from diagnosis to improve outcomes. These evolve in complex, hierarchical patterns over time whose aetiology appears predominantly determined by injury from the hypothalamic tumour location alongside adjuvant treatment strategies
The origins of X-ray emission from the hotspots of FRII radio sources
We use new and archival Chandra data to investigate the X-ray emission from a
large sample of compact hotspots of FRII radio galaxies and quasars from the 3C
catalogue. We find that only the most luminous hotspots tend to be in good
agreement with the predictions of a synchrotron self-Compton model with
equipartition magnetic fields. At low hotspot luminosities inverse-Compton
predictions are routinely exceeded by several orders of magnitude, but this is
never seen in more luminous hotspots. We argue that an additional synchrotron
component of the X-ray emission is present in low-luminosity hotspots, and that
the hotspot luminosity controls the ability of a given hotspot to produce
synchrotron X-rays, probably by determining the high-energy cutoff of the
electron energy spectrum. It remains plausible that all hotspots are close to
the equipartition condition.Comment: 49 pages, 16 figures. ApJ accepted. Revised version fixes a typo in
one of the Tables and corrects a statement about 3C27
The Electron Energy Distribution in the Hotspots of Cygnus A: Filling the Gap with the Spitzer Space Telescope
Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared
Array Camera, resulting in the detection of the high-energy tails or cut-offs
in the synchrotron spectra for all four hotspots of this archetype radio
galaxy. When combined with the other data collected from the literature, our
observations allow for detailed modeling of the broad-band emission for the
brightest spots A and D. We confirm that the X-ray flux detected previously
from these features is consistent with the synchrotron self-Compton radiation
for the magnetic field intensity 170 muG in spot A, and 270 muG in spot D. We
also find that the energy density of the emitting electrons is most likely
larger by a factor of a few than the energy density of the hotspots' magnetic
field. We construct energy spectra of the radiating ultrarelativistic
electrons. We find that for both hotspots A and D these spectra are consistent
with a broken power-law extending from at least 100 MeV up to 100 GeV, and that
the spectral break corresponds almost exactly to the proton rest energy of 1
GeV. We argue that the shape of the electron continuum reflects two different
regimes of the electron acceleration process at mildly relativistic shocks,
rather than resulting from radiative cooling and/or absorption effects. In this
picture the protons' inertia defines the critical energy for the hotspot
electrons above which Fermi-type acceleration processes may play a major role,
but below which the operating acceleration mechanism has to be of a different
type. At energies >100 GeV, the electron spectra cut-off/steepen again, most
likely as a result of spectral aging due to radiative loss effects. We discuss
several implications of the presented analysis for the physics of extragalactic
jets.Comment: 29 pages, 8 figures and 2 tables included. Accepted for publication
in Ap
Sub-Arcsecond Imaging of 3C123:108-GHz Continuum Observations of the Radio Hotspots
We present the results of sub-arcsecond 108 GHz continuum interferometric
observations toward the radio luminous galaxy 3C123. Using multi-array
observations, we utilize the high u,v dynamic range of the BIMA millimeter
array to sample fully spatial scales ranging from 0.5" to 50". This allows us
to make one-to-one comparisons of millimeter-wavelength emission in the radio
lobes and hotspots to VLA centimeter observations at 1.4, 4.9, 8.4, and 15 GHz.
At 108 GHz, the bright, eastern double hotspot in the southern lobe is
resolved. This is only the second time that a multiple hotspot region has been
resolved in the millimeter regime. We model the synchrotron spectra of the
hotspots and radio lobes using simple broken power-law models with high energy
cutoffs, and discuss the hotspot spectra and their implications for models of
multiple hotspot formation.Comment: 16 pages, 3 Figures, ApJ Accepte
PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium
Future cosmology space missions will concentrate on measuring the
polarization of the Cosmic Microwave Background, which potentially carries
invaluable information about the earliest phases of the evolution of our
universe. Such ambitious projects will ultimately be limited by the sensitivity
of the instrument and by the accuracy at which polarized foreground emission
from our own Galaxy can be subtracted out. We present the PILOT balloon project
which will aim at characterizing one of these foreground sources, the
polarization of the dust continuum emission in the diffuse interstellar medium.
The PILOT experiment will also constitute a test-bed for using multiplexed
bolometer arrays for polarization measurements. We present the results of
ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter,
and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be
published in Proc. SPIE volume 915
A Chandra X-ray Study of Cygnus A - II. The Nucleus
We report Chandra ACIS and quasi-simultaneous RXTE observations of the
nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the
properties of the active nucleus. In the Chandra observation, the hard (> a few
keV) X-ray emission is spatially unresolved with a size \approxlt 1 arcsec (1.5
kpc, H_0 = 50 km s^-1 Mpc^-1) and coincides with the radio and near infrared
nuclei. In contrast, the soft (< 2 keV) emission exhibits a bi-polar nebulosity
that aligns with the optical bi-polar continuum and emission-line structures
and approximately with the radio jet. In particular, the soft X-ray emission
corresponds very well with the [O III] \lambda 5007 and H\alpha + [N II]
\lambda\lambda 6548, 6583 nebulosity imaged with HST. At the location of the
nucleus there is only weak soft X-ray emission, an effect that may be intrinsic
or result from a dust lane that crosses the nucleus perpendicular to the source
axis. The spectra of the various X-ray components have been obtained by
simultaneous fits to the 6 detectors. The compact nucleus is detected to 100
keV and is well described by a heavily absorbed power law spectrum with
\Gamma_h = 1.52^{+0.12}_{-0.12} (similar to other narrow line radio galaxies)
and equivalent hydrogen column N_H (nuc) = 2.0^{+0.1}_{-0.2} \times 10^{23}
cm^-2.
(Abstract truncated).Comment: To be published in the Astrophysical Journal, v564 January 1, 2002
issue; 34 pages, 11 figures (1 color
X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background
The infrared-luminous galaxy NGC3256 is a classic example of a merger induced
nuclear starburst system. We find here that it is the most X-ray luminous
star-forming galaxy yet detected (~10^42 ergs/s). Long-slit optical
spectroscopy and a deep, high-resolution ROSAT X-ray image show that the
starburst is driving a "superwind" which accounts for ~20% of the observed soft
(kT~0.3 keV) X-ray emission. Our model for the broadband X-ray emission of
NGC3256 contains two additional components: a warm thermal plasma (kT~0.8 keV)
associated with the central starburst, and a hard power-law component with an
energy index of ~0.7. We find that the input of mechanical energy from the
starburst is more than sufficient to sustain the observed level of emission. We
also examine possible origins for the power-law component, concluding that
neither a buried AGN nor the expected population of high-mass X-ray binaries
can account for this emission. Inverse-Compton scattering, involving the
galaxy's copious flux of infrared photons and the relativistic electrons
produced by supernovae, is likely to make a substantial contribution to the
hard X-ray flux. Such a model is consistent with the observed radio and IR
fluxes and the radio and X-ray spectral indices. We explore the role of
X-ray-luminous starbursts in the production of the cosmic X-ray background
radiation. The number counts and spectral index distribution of the faint radio
source population, thought to be dominated by star-forming galaxies, suggest
that a significant fraction of the hard X-ray background could arise from
starbursts at moderate redshift.Comment: 31 pages (tex, epsf), 8 figures (postscript files), accepted for
publication in Part 1 of The Astrophysical Journa
The Aquila prestellar core population revealed by Herschel
The origin and possible universality of the stellar initial mass function
(IMF) is a major issue in astrophysics. One of the main objectives of the
Herschel Gould Belt Survey is to clarify the link between the prestellar core
mass function (CMF) and the IMF. We present and discuss the core mass function
derived from Herschel data for the large population of prestellar cores
discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc.
We detect a total of 541 starless cores in the entire ~11 deg^2 area of the
field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be
gravitationally bound, and thus prestellar in nature. Our Herschel results
confirm that the shape of the prestellar CMF resembles the stellar IMF, with
much higher quality statistics than earlier submillimeter continuum
ground-based surveys
A Study of 3CR Radio Galaxies from z = 0.15 to 0.65. II. Evidence for an Evolving Radio Structure
Radio structure parameters were measured from the highest quality radio maps
available for a sample of 3CR radio galaxies in the redshift range 0.15 < z <
0.65. Combined with similar data for quasars in the same redshift range, these
morphology data are used in conjunction with a quantification of the richness
of the cluster environment around these objects (the amplitude of the
galaxy-galaxy spatial covariance function, Bgg) to search for indirect evidence
of a dense intracluster medium (ICM). This is done by searching for confinement
and distortions of the radio structure that are correlated with Bgg.
Correlations between physical size and hot spot placement with Bgg show
evidence for an ICM only at z 0.4,
suggesting an epoch of z ~ 0.4 for the formation of an ICM in these Abell
richness class 0-1, FR2-selected clusters. X-ray selected clusters at
comparable redshifts, which contain FR1 type sources exclusively, are
demonstrably richer than the FR2-selected clusters found in this study. The
majority of the radio sources with high Bgg values at z < 0.4 can be described
as ``fat doubles'' or intermediate FR2/FR1s. The lack of correlation between
Bgg and bending angle or Bgg and lobe length asymmetry suggests that these
types of radio source distortion are caused by something other than interaction
with a dense ICM. Thus, a large bending angle cannot be used as an unambiguous
indicator of a rich cluster around powerful radio sources. These results
support the hypothesis made in Paper 1 that cluster quasars fade to become
FR2s, then FR1s, on a timescale of 0.9 Gyrs (for H0 = 50 km s^-1 Mpc^-1).Comment: 44 pages, 8 figures, 2 tables; to be published in the September 2002
issue of The Astronomical Journa
A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE
The Polaris Flare cloud region contains a great deal of extended emission. It
is at high declination and high Galactic latitude. It was previously seen
strongly in IRAS Cirrus emission at 100 microns. We have detected it with both
PACS and SPIRE on Herschel. We see filamentary and low-level structure. We
identify the five densest cores within this structure. We present the results
of a temperature, mass and density analysis of these cores. We compare their
observed masses to their virial masses, and see that in all cases the observed
masses lie close to the lower end of the range of estimated virial masses.
Therefore, we cannot say whether they are gravitationally bound prestellar
cores. Nevertheless, these are the best candidates to be potentialprestellar
cores in the Polaris cloud region.Comment: 5 pages, 2 figures, accepted by A&
- …