672 research outputs found

    A 40-Year Cohort Study of Evolving Hypothalamic Dysfunction in Infants and Young Children (<3 years) with Optic Pathway Gliomas

    Get PDF
    Despite high survival, paediatric optic pathway hypothalamic gliomas are associated with significant morbidity and late mortality. Those youngest at presentation have the worst outcomes. We aimed to assess presenting disease, tumour location, and treatment factors implicated in the evolution of neuroendocrine, metabolic, and neurobehavioural morbidity in 90 infants/children diagnosed before their third birthday and followed-up for 9.5 years (range 0.5–25.0). A total of 52 (57.8%) patients experienced endo-metabolic dysfunction (EMD), the large majority (46) of whom had hypothalamic involvement (H+) and lower endocrine event-free survival (EEFS) rates. EMD was greatly increased by a diencephalic syndrome presentation (85.2% vs. 46%, p = 0.001)), H+ (OR 6.1 95% CI 1.7–21.7, p 0.005), radiotherapy (OR 16.2, 95% CI 1.7–158.6, p = 0.017) and surgery (OR 4.8 95% CI 1.3–17.2, p = 0.015), all associated with anterior pituitary disorders. Obesity occurred in 25% of cases and was clustered with the endocrinopathies. Neurobehavioural deficits occurred in over half (52) of the cohort and were associated with H+ (OR 2.5 95% C.I. 1.1–5.9, p = 0.043) and radiotherapy (OR 23.1 C.I. 2.9–182, p = 0.003). Very young children with OPHG carry a high risk of endo-metabolic and neurobehavioural comorbidities which deserve better understanding and timely/parallel support from diagnosis to improve outcomes. These evolve in complex, hierarchical patterns over time whose aetiology appears predominantly determined by injury from the hypothalamic tumour location alongside adjuvant treatment strategies

    The origins of X-ray emission from the hotspots of FRII radio sources

    Get PDF
    We use new and archival Chandra data to investigate the X-ray emission from a large sample of compact hotspots of FRII radio galaxies and quasars from the 3C catalogue. We find that only the most luminous hotspots tend to be in good agreement with the predictions of a synchrotron self-Compton model with equipartition magnetic fields. At low hotspot luminosities inverse-Compton predictions are routinely exceeded by several orders of magnitude, but this is never seen in more luminous hotspots. We argue that an additional synchrotron component of the X-ray emission is present in low-luminosity hotspots, and that the hotspot luminosity controls the ability of a given hotspot to produce synchrotron X-rays, probably by determining the high-energy cutoff of the electron energy spectrum. It remains plausible that all hotspots are close to the equipartition condition.Comment: 49 pages, 16 figures. ApJ accepted. Revised version fixes a typo in one of the Tables and corrects a statement about 3C27

    The Electron Energy Distribution in the Hotspots of Cygnus A: Filling the Gap with the Spitzer Space Telescope

    Full text link
    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected from the literature, our observations allow for detailed modeling of the broad-band emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity 170 muG in spot A, and 270 muG in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots' magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100 MeV up to 100 GeV, and that the spectral break corresponds almost exactly to the proton rest energy of 1 GeV. We argue that the shape of the electron continuum reflects two different regimes of the electron acceleration process at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption effects. In this picture the protons' inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies >100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.Comment: 29 pages, 8 figures and 2 tables included. Accepted for publication in Ap

    Sub-Arcsecond Imaging of 3C123:108-GHz Continuum Observations of the Radio Hotspots

    Get PDF
    We present the results of sub-arcsecond 108 GHz continuum interferometric observations toward the radio luminous galaxy 3C123. Using multi-array observations, we utilize the high u,v dynamic range of the BIMA millimeter array to sample fully spatial scales ranging from 0.5" to 50". This allows us to make one-to-one comparisons of millimeter-wavelength emission in the radio lobes and hotspots to VLA centimeter observations at 1.4, 4.9, 8.4, and 15 GHz. At 108 GHz, the bright, eastern double hotspot in the southern lobe is resolved. This is only the second time that a multiple hotspot region has been resolved in the millimeter regime. We model the synchrotron spectra of the hotspots and radio lobes using simple broken power-law models with high energy cutoffs, and discuss the hotspot spectra and their implications for models of multiple hotspot formation.Comment: 16 pages, 3 Figures, ApJ Accepte

    PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    Full text link
    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proc. SPIE volume 915

    A Chandra X-ray Study of Cygnus A - II. The Nucleus

    Full text link
    We report Chandra ACIS and quasi-simultaneous RXTE observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (> a few keV) X-ray emission is spatially unresolved with a size \approxlt 1 arcsec (1.5 kpc, H_0 = 50 km s^-1 Mpc^-1) and coincides with the radio and near infrared nuclei. In contrast, the soft (< 2 keV) emission exhibits a bi-polar nebulosity that aligns with the optical bi-polar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] \lambda 5007 and H\alpha + [N II] \lambda\lambda 6548, 6583 nebulosity imaged with HST. At the location of the nucleus there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the 6 detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power law spectrum with \Gamma_h = 1.52^{+0.12}_{-0.12} (similar to other narrow line radio galaxies) and equivalent hydrogen column N_H (nuc) = 2.0^{+0.1}_{-0.2} \times 10^{23} cm^-2. (Abstract truncated).Comment: To be published in the Astrophysical Journal, v564 January 1, 2002 issue; 34 pages, 11 figures (1 color

    X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    Get PDF
    The infrared-luminous galaxy NGC3256 is a classic example of a merger induced nuclear starburst system. We find here that it is the most X-ray luminous star-forming galaxy yet detected (~10^42 ergs/s). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a "superwind" which accounts for ~20% of the observed soft (kT~0.3 keV) X-ray emission. Our model for the broadband X-ray emission of NGC3256 contains two additional components: a warm thermal plasma (kT~0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of ~0.7. We find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse-Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift.Comment: 31 pages (tex, epsf), 8 figures (postscript files), accepted for publication in Part 1 of The Astrophysical Journa

    The Aquila prestellar core population revealed by Herschel

    Get PDF
    The origin and possible universality of the stellar initial mass function (IMF) is a major issue in astrophysics. One of the main objectives of the Herschel Gould Belt Survey is to clarify the link between the prestellar core mass function (CMF) and the IMF. We present and discuss the core mass function derived from Herschel data for the large population of prestellar cores discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc. We detect a total of 541 starless cores in the entire ~11 deg^2 area of the field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be gravitationally bound, and thus prestellar in nature. Our Herschel results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much higher quality statistics than earlier submillimeter continuum ground-based surveys

    A Study of 3CR Radio Galaxies from z = 0.15 to 0.65. II. Evidence for an Evolving Radio Structure

    Full text link
    Radio structure parameters were measured from the highest quality radio maps available for a sample of 3CR radio galaxies in the redshift range 0.15 < z < 0.65. Combined with similar data for quasars in the same redshift range, these morphology data are used in conjunction with a quantification of the richness of the cluster environment around these objects (the amplitude of the galaxy-galaxy spatial covariance function, Bgg) to search for indirect evidence of a dense intracluster medium (ICM). This is done by searching for confinement and distortions of the radio structure that are correlated with Bgg. Correlations between physical size and hot spot placement with Bgg show evidence for an ICM only at z 0.4, suggesting an epoch of z ~ 0.4 for the formation of an ICM in these Abell richness class 0-1, FR2-selected clusters. X-ray selected clusters at comparable redshifts, which contain FR1 type sources exclusively, are demonstrably richer than the FR2-selected clusters found in this study. The majority of the radio sources with high Bgg values at z < 0.4 can be described as ``fat doubles'' or intermediate FR2/FR1s. The lack of correlation between Bgg and bending angle or Bgg and lobe length asymmetry suggests that these types of radio source distortion are caused by something other than interaction with a dense ICM. Thus, a large bending angle cannot be used as an unambiguous indicator of a rich cluster around powerful radio sources. These results support the hypothesis made in Paper 1 that cluster quasars fade to become FR2s, then FR1s, on a timescale of 0.9 Gyrs (for H0 = 50 km s^-1 Mpc^-1).Comment: 44 pages, 8 figures, 2 tables; to be published in the September 2002 issue of The Astronomical Journa

    A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE

    Get PDF
    The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potentialprestellar cores in the Polaris cloud region.Comment: 5 pages, 2 figures, accepted by A&
    corecore