1,038 research outputs found
Recommended from our members
The identification and psychological treatment of panic disorder in adolescents: a survey of CAMHS clinicians
Background
Panic disorder is experienced by around 1% of adolescents, and has a significant impact on social and academic functioning. Preliminary evidence supports the effectiveness of panic disorder specific treatment in adolescents with panic disorder, however panic disorder may be overlooked in adolescents due to overlapping symptoms with other anxiety disorders and other difficulties being more noticeable to others. The aim of this study was to establish what training National Health Service (NHS) Child and Adolescent Mental Health Services (CAMHS) clinicians have received in psychological therapies and panic disorder and how they identify and treat panic disorder in adolescents.
Method
CAMHS clinicians from a range of professions (n = 427), who were delivering psychological treatments to children and adolescents with anxiety disorders, participated. They completed a cross-sectional, online survey, including a vignette describing an adolescent with panic disorder, and were asked to identify the main diagnosis or presenting problem.
Results
Less than half the clinicians (48.6%) identified panic disorder or panic symptoms as the main presenting problem from the vignette. The majority of clinicians suggested CBT would be their treatment approach. However, few identified an evidence-based treatment protocol for working with young people with panic disorder. Almost half the sample had received no training in cognitive behaviour therapy (CBT) and around a fifth had received no training in delivering psychological treatments.
Conclusions
Only half of CAMHS clinicians identified panic disorder from a vignette and although CBT treatments are widely offered, only a minority of adolescents with panic disorder are receiving treatments developed for, and evaluated with young people with panic disorder. There is a vital need for clinician training, the use of tools that aid identification and the implementation of evidence-based treatments within CAMHS
Blast injuries in children: a mixed-methods narrative review.
Background and significance. Blast injuries arising from high explosive weaponry is common in conflict areas. While blast injury characteristics are well recognised in the adults, there is a lack of consensus as to whether these characteristics translate to the paediatric population. Understanding blast injury patterns in this cohort is essential for providing appropriate provision of services and care for this vulnerable cohort. Methods. In this mixed-method review, original papers were screened for data pertaining to paediatric injuries following blasts. Information on demographics, morbidity and mortality and service requirements were evaluated. The papers were written and published in English from a range of international specialists in the field. Patient and public involvement statement: No patients or members of the public were involved in this review. Results. Children affected by blast injuries are predominantly male and their injuries arise from explosive remnants of war, particularly unexploded ordinance. Blasts show increased morbidity and mortality in younger children, while older children have injury patterns similar to adults. Head and burn injuries represent a significant cause of mortality in young children, while lower limb morbidity is reduced compared to adults. Children have a disproportionate requirement for both operative and non-operative service resources, and provisions for this burden are essential. Conclusions. Certain characteristics of paediatric injuries arising from blasts are distinct from that of the adult cohort, while the intensive demands on services highlights the importance of understanding the diverse injury patterns in order to optimise future service provisions in caring for this the child blast survivor
First characterization of a superconducting filter-bank spectrometer for hyper-spectral microwave atmospheric sounding with transition edge sensor readout
We describe the design, fabrication, integration and characterization of a
prototype superconducting filter bank with transition edge sensor readout
designed to explore millimetre-wave detection at frequencies in the range 40 to
65 GHz. Results indicate highly uniform filter channel placement in frequency
and high overall detection efficiency. The route to a full atmospheric sounding
instrument in this frequency range is discussed.Centre for Earth Observing Instrumentation UK (CEOI
The origins of X-ray emission from the hotspots of FRII radio sources
We use new and archival Chandra data to investigate the X-ray emission from a
large sample of compact hotspots of FRII radio galaxies and quasars from the 3C
catalogue. We find that only the most luminous hotspots tend to be in good
agreement with the predictions of a synchrotron self-Compton model with
equipartition magnetic fields. At low hotspot luminosities inverse-Compton
predictions are routinely exceeded by several orders of magnitude, but this is
never seen in more luminous hotspots. We argue that an additional synchrotron
component of the X-ray emission is present in low-luminosity hotspots, and that
the hotspot luminosity controls the ability of a given hotspot to produce
synchrotron X-rays, probably by determining the high-energy cutoff of the
electron energy spectrum. It remains plausible that all hotspots are close to
the equipartition condition.Comment: 49 pages, 16 figures. ApJ accepted. Revised version fixes a typo in
one of the Tables and corrects a statement about 3C27
MetaTel: Ongoing work on a meta-material sub-THz telescope for Earth observing
We report on ongoing technology development activities in the build and testing of a refractive telescope composed of metamaterial Gradient Index (GrIn) lenses based on photolithographic meshes. This concept is tailored for Earth Observation, and more precisely limb-scanning in the sub- THz bands addressing emission lines between 50 and 190 GHz. A single GrIn lens design which includes in-built anti-reflection coating layers, allows us to produce sufficient refraction to allow an optical design of a set of compound lenses to create the first THz range telescope fully composed of metamaterials. First lens prototypes have been built and tested spectrally and spatially and compared to analytical models showing good agreement. Prediction of telescope performance is discussed as well as future developments
The Electron Energy Distribution in the Hotspots of Cygnus A: Filling the Gap with the Spitzer Space Telescope
Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared
Array Camera, resulting in the detection of the high-energy tails or cut-offs
in the synchrotron spectra for all four hotspots of this archetype radio
galaxy. When combined with the other data collected from the literature, our
observations allow for detailed modeling of the broad-band emission for the
brightest spots A and D. We confirm that the X-ray flux detected previously
from these features is consistent with the synchrotron self-Compton radiation
for the magnetic field intensity 170 muG in spot A, and 270 muG in spot D. We
also find that the energy density of the emitting electrons is most likely
larger by a factor of a few than the energy density of the hotspots' magnetic
field. We construct energy spectra of the radiating ultrarelativistic
electrons. We find that for both hotspots A and D these spectra are consistent
with a broken power-law extending from at least 100 MeV up to 100 GeV, and that
the spectral break corresponds almost exactly to the proton rest energy of 1
GeV. We argue that the shape of the electron continuum reflects two different
regimes of the electron acceleration process at mildly relativistic shocks,
rather than resulting from radiative cooling and/or absorption effects. In this
picture the protons' inertia defines the critical energy for the hotspot
electrons above which Fermi-type acceleration processes may play a major role,
but below which the operating acceleration mechanism has to be of a different
type. At energies >100 GeV, the electron spectra cut-off/steepen again, most
likely as a result of spectral aging due to radiative loss effects. We discuss
several implications of the presented analysis for the physics of extragalactic
jets.Comment: 29 pages, 8 figures and 2 tables included. Accepted for publication
in Ap
Sub-Arcsecond Imaging of 3C123:108-GHz Continuum Observations of the Radio Hotspots
We present the results of sub-arcsecond 108 GHz continuum interferometric
observations toward the radio luminous galaxy 3C123. Using multi-array
observations, we utilize the high u,v dynamic range of the BIMA millimeter
array to sample fully spatial scales ranging from 0.5" to 50". This allows us
to make one-to-one comparisons of millimeter-wavelength emission in the radio
lobes and hotspots to VLA centimeter observations at 1.4, 4.9, 8.4, and 15 GHz.
At 108 GHz, the bright, eastern double hotspot in the southern lobe is
resolved. This is only the second time that a multiple hotspot region has been
resolved in the millimeter regime. We model the synchrotron spectra of the
hotspots and radio lobes using simple broken power-law models with high energy
cutoffs, and discuss the hotspot spectra and their implications for models of
multiple hotspot formation.Comment: 16 pages, 3 Figures, ApJ Accepte
A Chandra X-ray Study of Cygnus A - II. The Nucleus
We report Chandra ACIS and quasi-simultaneous RXTE observations of the
nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the
properties of the active nucleus. In the Chandra observation, the hard (> a few
keV) X-ray emission is spatially unresolved with a size \approxlt 1 arcsec (1.5
kpc, H_0 = 50 km s^-1 Mpc^-1) and coincides with the radio and near infrared
nuclei. In contrast, the soft (< 2 keV) emission exhibits a bi-polar nebulosity
that aligns with the optical bi-polar continuum and emission-line structures
and approximately with the radio jet. In particular, the soft X-ray emission
corresponds very well with the [O III] \lambda 5007 and H\alpha + [N II]
\lambda\lambda 6548, 6583 nebulosity imaged with HST. At the location of the
nucleus there is only weak soft X-ray emission, an effect that may be intrinsic
or result from a dust lane that crosses the nucleus perpendicular to the source
axis. The spectra of the various X-ray components have been obtained by
simultaneous fits to the 6 detectors. The compact nucleus is detected to 100
keV and is well described by a heavily absorbed power law spectrum with
\Gamma_h = 1.52^{+0.12}_{-0.12} (similar to other narrow line radio galaxies)
and equivalent hydrogen column N_H (nuc) = 2.0^{+0.1}_{-0.2} \times 10^{23}
cm^-2.
(Abstract truncated).Comment: To be published in the Astrophysical Journal, v564 January 1, 2002
issue; 34 pages, 11 figures (1 color
The Aquila prestellar core population revealed by Herschel
The origin and possible universality of the stellar initial mass function
(IMF) is a major issue in astrophysics. One of the main objectives of the
Herschel Gould Belt Survey is to clarify the link between the prestellar core
mass function (CMF) and the IMF. We present and discuss the core mass function
derived from Herschel data for the large population of prestellar cores
discovered with SPIRE and PACS in the Aquila Rift cloud complex at d ~ 260 pc.
We detect a total of 541 starless cores in the entire ~11 deg^2 area of the
field imaged at 70-500 micron with SPIRE/PACS. Most of these cores appear to be
gravitationally bound, and thus prestellar in nature. Our Herschel results
confirm that the shape of the prestellar CMF resembles the stellar IMF, with
much higher quality statistics than earlier submillimeter continuum
ground-based surveys
A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE
The Polaris Flare cloud region contains a great deal of extended emission. It
is at high declination and high Galactic latitude. It was previously seen
strongly in IRAS Cirrus emission at 100 microns. We have detected it with both
PACS and SPIRE on Herschel. We see filamentary and low-level structure. We
identify the five densest cores within this structure. We present the results
of a temperature, mass and density analysis of these cores. We compare their
observed masses to their virial masses, and see that in all cases the observed
masses lie close to the lower end of the range of estimated virial masses.
Therefore, we cannot say whether they are gravitationally bound prestellar
cores. Nevertheless, these are the best candidates to be potentialprestellar
cores in the Polaris cloud region.Comment: 5 pages, 2 figures, accepted by A&
- …