45 research outputs found

    Ectodysplasin A Pathway Contributes to Human and Murine Skin Repair

    Get PDF
    The highly conserved ectodysplasin A (EDA)/EDA receptor signaling pathway is critical during development for the formation of skin appendages. Mutations in genes encoding components of the EDA pathway disrupt normal appendage development, leading to the human disorder hypohidrotic ectodermal dysplasia. Spontaneous mutations in the murine Eda (Tabby) phenocopy human X-linked hypohidrotic ectodermal dysplasia. Little is known about the role of EDA signaling in adult skin homeostasis or repair. Because wound healing largely mimics the morphogenic events that occur during development, we propose a role for EDA signaling in adult wound repair. Here we report a pronounced delay in healing in Tabby mice, demonstrating a functional role for EDA signaling in adult skin. Moreover, pharmacological activation of the EDA pathway in both Tabby and wild-type mice significantly accelerates healing, influencing multiple processes including re-epithelialization and granulation tissue matrix deposition. Finally, we show that the healing promoting effects of EDA receptor activation are conserved in human skin repair. Thus, targeted manipulation of the EDA/EDA receptor pathway has clear therapeutic potential for the future treatment of human pathological wound healing

    Group A streptococcus induces CD1a-autoreactive T cells and promotes psoriatic inflammation

    Get PDF
    Group A Streptococcus (GAS) infection is associated with multiple clinical sequelae, including different subtypes of psoriasis. Such post-streptococcal disorders have been long known but are largely unexplained. CD1a is expressed at constitutively high levels by Langerhans cells and presents lipid antigens to T cells, but the potential relevance to GAS infection has not been studied. Here, we investigated whether GAS-responsive CD1a-restricted T cells contribute to the pathogenesis of psoriasis. Healthy individuals had high frequencies of circulating and cutaneous GAS-responsive CD4+ and CD8+ T cells with rapid effector functions, including the production of interleukin-22 (IL-22). Human skin and blood single-cell CITE-seq analyses of IL-22-producing T cells showed a type 17 signature with proliferative potential, whereas IFN-Îł-producing T cells displayed cytotoxic T lymphocyte characteristics. Furthermore, individuals with psoriasis had significantly higher frequencies of circulating GAS-reactive T cells, enriched for markers of activation, cytolytic potential, and tissue association. In addition to responding to GAS, subsets of expanded GAS-reactive T cell clones/lines were found to be autoreactive, which included the recognition of the self-lipid antigen lysophosphatidylcholine. CD8+ T cell clones/lines produced cytolytic mediators and lysed infected CD1a-expressing cells. Furthermore, we established cutaneous models of GAS infection in a humanized CD1a transgenic mouse model and identified enhanced and prolonged local and systemic inflammation, with resolution through a psoriasis-like phenotype. Together, these findings link GAS infection to the CD1a pathway and show that GAS infection promotes the proliferation and activation of CD1a-autoreactive T cells, with relevance to post-streptococcal disease, including the pathogenesis and treatment of psoriasis

    Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite-derived phospholipase.

    Get PDF
    Atopic dermatitis is a common pruritic skin disease in which barrier dysfunction and cutaneous inflammation play a role in pathogenesis. Mechanisms underlying the associated inflammation are not fully understood, and while CD1a-expressing Langerhans cells are known to be enriched within lesions, their role in clinical disease pathogenesis has not been studied. Here we observed that house dust mite (HDM) generates neolipid antigens for presentation by CD1a to T cells in the blood and skin lesions of affected individuals. HDM-responsive CD1a-reactive T cells increased in frequency after birth and showed rapid effector function, consistent with antigen-driven maturation. To define the underlying mechanisms, we analyzed HDM-challenged human skin and observed allergen-derived phospholipase (PLA2) activity in vivo. CD1a-reactive T cell activation was dependent on HDM-derived PLA2 and such cells infiltrated the skin after allergen challenge. Filaggrin insufficiency is associated with atopic dermatitis, and we observed that filaggrin inhibits PLA2 activity and inhibits CD1a-reactive PLA2-generated neolipid-specific T cell activity from skin and blood. The most widely used classification schemes of hypersensitivity, such as Gell and Coombs are predicated on the idea that non-peptide stimulants of T cells act as haptens that modify peptides or proteins. However our results point to a broader model that does not posit haptenation, but instead shows that HDM proteins generate neolipid antigens which directly activate T cells. Specifically, the data identify a pathway of atopic skin inflammation, in which house dust mite-derived phospholipase A2 generates antigenic neolipids for presentation to CD1a-reactive T cells, and define PLA2 inhibition as a function of filaggrin, supporting PLA2 inhibition as a therapeutic approach

    A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue.

    Get PDF
    Group-2 innate lymphoid cells (ILC2), type-2 cytokines, and eosinophils have all been implicated in sustaining adipose tissue homeostasis. However, the interplay between the stroma and adipose-resident immune cells is less well understood. We identify that white adipose tissue-resident multipotent stromal cells (WAT-MSCs) can act as a reservoir for IL-33, especially after cell stress, but also provide additional signals for sustaining ILC2. Indeed, we demonstrate that WAT-MSCs also support ICAM-1-mediated proliferation and activation of LFA-1-expressing ILC2s. Consequently, ILC2-derived IL-4 and IL-13 feed back to induce eotaxin secretion from WAT-MSCs, supporting eosinophil recruitment. Thus, MSCs provide a niche for multifaceted dialogue with ILC2 to sustain a type-2 immune environment in WAT

    CD1a promotes systemic manifestations of skin inflammation

    Get PDF
    Inflammatory skin conditions are increasingly recognised as being associated with systemic inflammation. The mechanisms connecting the cutaneous and systemic disease are not well understood. CD1a is a virtually monomorphic major histocompatibility complex (MHC) class I-like molecule, highly expressed by skin and mucosal Langerhans cells, and presents lipid antigens to T-cells. Here we show an important role for CD1a in linking cutaneous and systemic inflammation in two experimental disease models. In human CD1a transgenic mice, the toll-like receptor (TLR)7 agonist imiquimod induces more pronounced splenomegaly, expansion of the peripheral blood and spleen T cell compartments, and enhanced neutrophil and eosinophil responses compared to the wild-type, accompanied by elevated skin and plasma cytokine levels, including IL-23, IL-1α, IL-1ÎČ, MCP-1 and IL-17A. Similar systemic escalation is shown in MC903-induced skin inflammation. The exacerbated inflammation could be counter-acted by CD1a-blocking antibodies, developed and screened in our laboratories. The beneficial effect is epitope dependent, and we further characterise the five best-performing antibodies for their capacity to modulate CD1a-expressing cells and ameliorate CD1a-dependent systemic inflammatory responses. In summary, we show that a therapeutically targetable CD1a-dependent pathway may play a role in the systemic spread of cutaneous inflammation

    CD1 lipidomes reveal lipid-binding motifs and size-based antigen-display mechanisms

    Get PDF
    The CD1 system binds lipid antigens for display to T cells. Here, we solved lipidomes for the four human CD1 antigen-presenting molecules, providing a map of self-lipid display. Answering a basic question, the detection of >2,000 CD1-lipid complexes demonstrates broad presentation of self-sphingolipids and phospholipids. Whereas peptide antigens are chemically processed, many lipids are presented in an unaltered form. However, each type of CD1 protein differentially edits the self-lipidome to show distinct capture motifs based on lipid length and chemical composition, suggesting general antigen display mechanisms. For CD1a and CD1d, lipid size matches the CD1 cleft volume. CD1c cleft size is more variable, and CD1b is the outlier, where ligands and clefts show an extreme size mismatch that is explained by uniformly seating two small lipids in one cleft. Furthermore, the list of compounds that comprise the integrated CD1 lipidome supports the ongoing discovery of lipid blockers and antigens for T cells

    Plankton as prevailing conditions: A surveillance role for plankton indicators within the Marine Strategy Framework Directive

    Get PDF
    https://www.sciencedirect.com/science/article/pii/S0308597X17306711The Marine Strategy Framework Directive (MSFD) uses an indicator-based approach for ecosystem assessment; indicators of the state of ecosystem components ('state indicators') are used to determine whether, or not, these ecosystem components are at ‘Good Environmental Status’ relative to prevailing oceanographic conditions. Here, it is illustrated that metrics of change in plankton communities frequently provide indications of changing prevailing oceanographic conditions. Plankton indicators can therefore provide useful diagnostic information when interpreting results and determining assessment outcomes for analyses of state indicators across the food web. They can also perform a strategic role in assessing these state indicators by influencing target setting and management measures. In addition to their primary role of assessing the state of pelagic habitats against direct anthropogenic pressures, plankton community indicators can therefore also fulfil an important 'surveillance' role for other state indicators used to formally assess biodiversity status under the MSFD

    Manganese superoxide dismutase from Thermus thermophilus: A structural model refined at 1.8 A resolution

    Full text link
    The structure of Mn(III) superoxide dismutase (Mn(III)SOD) from Thermus thermophilus, a tetramer of chains 203 residues in length, has been refined by restrained least-squares methods. The R-factor (= [summation operator]||Fo|-|Fc||/[summation operator]|Fo|) for the 54,056 unique reflections measured between 10[middle dot]0 and 1[middle dot]8 A (96% of all possible reflections) is 0[middle dot]176 for a model comprising the protein dimer and 180 bound solvents, the asymmetric unit of the P41212 cell.The monomer chain forms two domains as determined by distance plots: the N-terminal domain is dominated by two long antiparallel helices (residues 21 to 45 and 69 to 89) and the C-terminal domain (residues 100 to 203) is an [alpha] + [beta] structure including a three-stranded sheet. Features that may be important for the folding and function of this MnSOD include: (1) a cis-proline in a turn preceding the first long helix; (2) a residue inserted at position 30 that distorts the helix near the first Mn ligand; and (3) the locations of glycine and proline residues in the domain connector (residues 92 to 99) and in the vicinity of the short cross connection (residues 150 to 159) that links two strands of the [beta]-sheet. Domain-domain contacts include salt bridges between arginine residues and acidic side chains, an extensive hydrophobic interface, and at least ten hydrogen-bonded interactions.The tetramer possesses 222 symmetry but is held together by only two types of interfaces. The dimer interface at the non-crystallographic dyad is extensive (1000 A2 buried surface/ monomer) and incorporates 17 trapped or structural solvents. The dimer interface at the crystallographic dyad buries fewer residues (750 A2/monomer) and resembles a snap fastener in which a type I turn thrusts into a hydrophobic basket formed by a ring of helices in the opposing chain.Each of the metal sites is fully occupied, with the Mn(III) five-co-ordinate in trigonal bipyramidal geometry. One of the axial ligands is solvent; the four protein ligands are His28, His83, Asp166 and His170. Surrounding the metal-ligand cluster is a shell of predominantly hydrophobic residues from both chains of the asymmetric unit (Phe86A, Trp87A, Trp132A, Trp168A, Tyr183A, Tyr172B, Tyr173B), and both chains collaborate in the formation of a solvent-lined channel that terminates at Tyr36 and His32 near the metal ion and is presumed to be the path by which substrate or other inner-sphere ligands reach the metal. A pocket adjoining the metal, formed by His33, Trp87, His83 and Tyr36, is postulated to be the substrate-binding site. Refinement of 2.3 A data from crystals reduced with dithionite indicates that the co-ordination geometry at the metal is not changed by reduction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29328/1/0000395.pd

    Dipeptidyl peptidase-1 inhibition in patients hospitalised with COVID-19: a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial

    Get PDF
    Background Neutrophil serine proteases are involved in the pathogenesis of COVID-19 and increased serine protease activity has been reported in severe and fatal infection. We investigated whether brensocatib, an inhibitor of dipeptidyl peptidase-1 (DPP-1; an enzyme responsible for the activation of neutrophil serine proteases), would improve outcomes in patients hospitalised with COVID-19. Methods In a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial, across 14 hospitals in the UK, patients aged 16 years and older who were hospitalised with COVID-19 and had at least one risk factor for severe disease were randomly assigned 1:1, within 96 h of hospital admission, to once-daily brensocatib 25 mg or placebo orally for 28 days. Patients were randomly assigned via a central web-based randomisation system (TruST). Randomisation was stratified by site and age (65 years or ≄65 years), and within each stratum, blocks were of random sizes of two, four, or six patients. Participants in both groups continued to receive other therapies required to manage their condition. Participants, study staff, and investigators were masked to the study assignment. The primary outcome was the 7-point WHO ordinal scale for clinical status at day 29 after random assignment. The intention-to-treat population included all patients who were randomly assigned and met the enrolment criteria. The safety population included all participants who received at least one dose of study medication. This study was registered with the ISRCTN registry, ISRCTN30564012. Findings Between June 5, 2020, and Jan 25, 2021, 406 patients were randomly assigned to brensocatib or placebo; 192 (47·3%) to the brensocatib group and 214 (52·7%) to the placebo group. Two participants were excluded after being randomly assigned in the brensocatib group (214 patients included in the placebo group and 190 included in the brensocatib group in the intention-to-treat population). Primary outcome data was unavailable for six patients (three in the brensocatib group and three in the placebo group). Patients in the brensocatib group had worse clinical status at day 29 after being randomly assigned than those in the placebo group (adjusted odds ratio 0·72 [95% CI 0·57–0·92]). Prespecified subgroup analyses of the primary outcome supported the primary results. 185 participants reported at least one adverse event; 99 (46%) in the placebo group and 86 (45%) in the brensocatib group. The most common adverse events were gastrointestinal disorders and infections. One death in the placebo group was judged as possibly related to study drug. Interpretation Brensocatib treatment did not improve clinical status at day 29 in patients hospitalised with COVID-19
    corecore