31 research outputs found

    eMIL: advanced emission Mössbauer spectrometer for measurements in versatile conditions

    Get PDF
    The current work presents a contemporary design of an advanced emission Mössbauer Spectrometer: eMIL equipped with a parallel-plate avalanche detector, which has been devised and built for the Mössbauer collaboration at ISOLDE/CERN. The setup is based on emission geometry, combined with on-line/off-line isotope implantation and provides numerous advantages over conversion electron, common emission (where isotope is deposited chemically on a sample) or transmission Mössbauer spectroscopy. eMIL is designed to measure hyperfine interactions in solids under various exposures. The implemented design overcomes limitations and improves performance and handling. In the current revision, the chamber is supplied with an UV extension — allowing to perform studies of photo-catalytic materials under external light exposure. A specifically designed motorized lid-samples-holder is fully automatized, and makes it possible to study up to 4 samples loaded in a magazine within a temperature range from RT up to 1100 K and to perform angular dependent measurements in high vacuum. This work additionally briefly describes data acquisition with additional electronic blocks, vacuum and data-acquisition system construction

    Interface induced out-of-plane magnetic anisotropy in magnetoelectric BiFeO3-BaTiO3 superlattices

    Get PDF
    Room temperature magnetoelectric BiFeO3-BaTiO3 superlattices with strong out-of-plane magnetic anisotropy have been prepared by pulsed laser deposition. We show that the out-ofplane magnetization component increases with the increasing number of double layers. Moreover, the magnetoelectric voltage coefficient can be tuned by varying the number of interfaces, reaching a maximum value of 29 V/cmOe for the20×BiFeO3-BaTiO3 superlattice. This enhancement is accompanied by a high degree of perpendicular magnetic anisotropy, making the latter an ideal candidate for the next generation of data storage devices

    Влияние семантики локализованности на текстовую внешнетемпоральную транспозицию

    Get PDF
    Языковая временная семантика в лингвистических исследованиях последних лет рассматривается как широкая сфера языковых/речевых отношений различных категорий (грамматических, функционально- семантических, текстовых), т.е. как область пересечения, иногда концентрации аспектуального, собственно темпорального, таксисного и другого аналогичного содержания, где центральное место принадлежит глагольной единице, потенциальные функциональные возможности которой и определяют указанные грамматические отношения

    Anisotropy of the electric field gradient in two-dimensional alpha-MoO_(3) investigated by (57)^Mn((57)^Fe) emission mossbauer spectroscopy

    Get PDF
    Van der Waals alpha-MoO_(3) samples offer awide range of attractive catalytic, electronic, and optical properties. We present herein an emission Mossbauer spectroscopy (eMS) study of the electric-field gradient (EFG) anisotropy in crystalline free-standing alpha-MoO_(3) samples. Although alpha-MoO3 is a twodimensional (2D) material, scanning electron microscopy shows that the crystals are 0.5-5-mu m thick. The combination of X-ray diffraction and micro-Raman spectroscopy, performed after sample preparation, provided evidence of the phase purity and crystal quality of the samples. The eMS measurements were conducted following the implantation of (57)^Mn (t(1/ 2) = 1.5 min), which decays to the (57)^Fe, 14.4 keV Mossbauer state. The eMS spectra of the samples are dominated by a paramagnetic doublet (D1) with an angular dependence, pointing to the Fe^(2+) probe ions being in a crystalline environment. It is attributed to an asymmetric EFG at the eMS probe site originating from strong in-plane covalent bonds and weak out-of-plane van derWaals interactions in the 2D material. Moreover, a second broad component, D2, can be assigned to Fe^(3+) defects that are dynamically generated during the online measurements. The results are compared to ab initio simulations and are discussed in terms of the in-plane and out-of-plane interactions in the syste

    Temperature Dependence of the Hyperfine Magnetic Field at Fe Sites in Ba-Doped BiFeO3 Thin Films Studied by Emission Mössbauer Spectroscopy

    Get PDF
    Emission 57Fe Mössbauer spectroscopy (eMS), following the implantation of radioactive 57Mn+ ions, has been used to study the temperature dependence of the hyperfine magnetic field at Fe sites in Ba-doped BiFeO3 (BFO) thin films. 57Mn β decays (t1/2 = 90 s) to the 14.4 keV Mössbauer state of 57Fe, thus allowing online eMS measurements at a selection of sample temperatures during Mn implantation. The eMS measurements were performed on two thin film BFO samples, 88 nm and 300 nm thick, and doped to 15% with Ba ions. The samples were prepared by pulsed laser deposition on SrTiO3 substrates. X-ray diffraction analyses of the samples showed that the films grew in a tetragonal distorted structure. The Mössbauer spectra of the two films, measured at absorber temperatures in the range 301 K–700 K, comprised a central pair of paramagnetic doublets and a magnetic sextet feature in the wings. The magnetic component was resolved into (i) a component attributed to hyperfine interactions at Fe3+ ions located in octahedral sites (Bhf); and (ii) to Fe3+ ions in implantation induced lattice defects, which were characterized by a distribution of the magnetic field BDistr. The hyperfine magnetic field at the Fe probes in the octahedral site has a room temperature value of Bhf = 44.5(9) T. At higher sample temperatures, the Bhf becomes much weaker, with the Fe3+ hyperfine magnetic contribution disappearing above 700 K. Simultaneous analysis of the Ba–BFO eMS spectra shows that the variation of the hyperfine field with temperature follows the Brillouin curve for S = 5/2.This work has received the financial support from the Federal Ministry of Education and Research (BMBF) through grants 05K16PGA, 05K22PGA, 05K16SI1, 05K19SI1 “eMIL” and “eMMA”; from the European Union’s Horizon 2020 Framework research and innovation program under grant agreement no. 654002 (ENSAR2) and 101057511 (EURO-LABS); from the Ministry of Economy and Competitiveness Consolider—Ingenio Project CSD2009 0013 “IMAGINE” Spain, and Banco Santander-UCM, project PR87/19-22613; from the Austrian Science Fund (FWF) through projects P26830 and P31423, from the Icelandic University Research Fund; from the National Research Foundation (South Africa); and from the Ministry of Economy and Competitiveness (MINECO/FEDER) for the Grant No. RTI2018-094683-B-C55 C55 and Basque Government Grant No. IT-1500-22

    Anisotropy of the electric field gradient in two-dimensional α-MoO3 investigated by 57Mn(57Fe) emission Mössbauer spectroscopy

    Get PDF
    Van der Waals α-MoO3 samples offer a wide range of attractive catalytic, electronic, and optical properties. We present herein an emission Mössbauer spectroscopy (eMS) study of the electric-field gradient (EFG) anisotropy in crystalline free-standing α-MoO3 samples. Although α-MoO3 is a two-dimensional (2D) material, scanning electron microscopy shows that the crystals are 0.5-5-µm thick. The combination of X-ray diffraction and micro-Raman spectroscopy, performed after sample preparation, provided evidence of the phase purity and crystal quality of the samples. The eMS measurements were conducted following the implantation of 57Mn (t1/2 = 1.5 min), which decays to the 57Fe, 14.4 keV Mössbauer state. The eMS spectra of the samples are dominated by a paramagnetic doublet (D1) with an angular dependence, pointing to the Fe2+ probe ions being in a crystalline environment. It is attributed to an asymmetric EFG at the eMS probe site originating from strong in-plane covalent bonds and weak out-of-plane van der Waals interactions in the 2D material. Moreover, a second broad component, D2, can be assigned to Fe3+ defects that are dynamically generated during the online measurements. The results are compared to ab initio simulations and are discussed in terms of the in-plane and out-of-plane interactions in the system

    Characterization of barren, granitic soils from the Nubian Desert (SW Egypt) by 57Fe Mössbauer spectroscopy

    No full text
    57 Fe Mössbauer spectroscopy - a versatile technique involving the recoil-free, resonant absorption and emission of nuclear gamma (γ) rays by the iron-57 isotope in natural iron in solids - has been used to provide quantitative information about the mineral host, occupation sites and oxidation states of iron atoms in geological samples. This technique has been applied to the bulk chemistry of a barren soil (Soil A) derived from an aluminous-type granite and another barren soil (Soil B) derived from a sodic-type granite located ~ 100 kilometers apart in the Nubian Deseit in the currently hyper arid south-west of Egypt and which exhibit distinct chemical and mineral differences. The analyses indicate different mineral hosts for the iron in these samples, namely, vermiculite-chlorite plus some hematite in Soil A and hematite and goethite plus minor aegirines in Soil B. Each soil has distinct intensities of oxidized iron (89% for Soil A and 100% for Soil B) and these differences reflect changes in soil sources and processes

    Characterization of barren, granitic soils from the Nubian Desert (SW Egypt) by 57

    No full text
    57 Fe Mössbauer spectroscopy - a versatile technique involving the recoil-free, resonant absorption and emission of nuclear gamma (γ) rays by the iron-57 isotope in natural iron in solids - has been used to provide quantitative information about the mineral host, occupation sites and oxidation states of iron atoms in geological samples. This technique has been applied to the bulk chemistry of a barren soil (Soil A) derived from an aluminous-type granite and another barren soil (Soil B) derived from a sodic-type granite located ~ 100 kilometers apart in the Nubian Deseit in the currently hyper arid south-west of Egypt and which exhibit distinct chemical and mineral differences. The analyses indicate different mineral hosts for the iron in these samples, namely, vermiculite-chlorite plus some hematite in Soil A and hematite and goethite plus minor aegirines in Soil B. Each soil has distinct intensities of oxidized iron (89% for Soil A and 100% for Soil B) and these differences reflect changes in soil sources and processes

    Controls on iron mobilisation from volcanic ash at low pH: Insights from dissolution experiments and Mössbauer spectroscopy

    No full text
    The deposition of volcanic ash from explosive eruptions to the surface ocean is a source of iron (Fe) for marine phytoplankton. However, the factors that determine the soluble and thus, potentially bioavailable, fraction of Fe in ash from magma source to ocean sink remain poorly understood. We investigate for the first time the release of both Fe(II) and Fe(III) fromsix natural ash samples in pH 1 H2SO4 representative of exposure to aqueous lowpH conditions during airborne transport.Mössbauer spectroscopy analysis of the ash suggests that the overall (168 h) trends in Fetot and Fe(II)/Fetot release by individual samples are governed by dissolution of Fe-bearing aluminosilicates or oxides of the ash bulk. In contrast, the initial (b6 h) trends in Fe release may reflect chemical properties of the ash surface imparted by the ash's eruptive history, supported in part by X-ray photoelectron spectroscopy analysis. Preferential release of Fe(III) relative to Fe(II) immediately on ash input to acid is attributed to oxidation of ash surfaces within the eruption plume. Additionally, prior exposure of ash to a HF- or HCl-rich plumemay enhance Fe release by, respectively, reducing aluminosilicate resistance to acid dissolution or lowering the pH of the liquid film on airborne ash. Altogether, our findings highlight that differing Fe speciation in the ash bulk and surface, reflecting itsmagmatic and eruptive history, exerts a strong influence on the Fe release behaviour of ash even from the same volcano. The relative importance of bulk versus surface controls on Fe mobilisation from ash during atmospheric transport will ultimately depend on the duration of contact with acids before deposition to the ocean
    corecore