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Anisotropy of the Electric Field Gradient in Two-Dimensional
α-MoO3 Investigated by 57Mn(57Fe) Emission
Mössbauer Spectroscopy
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Abstract: Van der Waals α-MoO3 samples offer a wide range of attractive catalytic, electronic, and optical
properties. We present herein an emission Mössbauer spectroscopy (eMS) study of the electric-field
gradient (EFG) anisotropy in crystalline free-standing α-MoO3 samples. Although α-MoO3 is a two-
dimensional (2D) material, scanning electron microscopy shows that the crystals are 0.5–5-µm thick. The
combination of X-ray diffraction and micro-Raman spectroscopy, performed after sample preparation,
provided evidence of the phase purity and crystal quality of the samples. The eMS measurements
were conducted following the implantation of 57Mn (t1/2 = 1.5 min), which decays to the 57Fe, 14.4 keV
Mössbauer state. The eMS spectra of the samples are dominated by a paramagnetic doublet (D1) with an
angular dependence, pointing to the Fe2+ probe ions being in a crystalline environment. It is attributed
to an asymmetric EFG at the eMS probe site originating from strong in-plane covalent bonds and weak
out-of-plane van der Waals interactions in the 2D material. Moreover, a second broad component, D2,
can be assigned to Fe3+ defects that are dynamically generated during the online measurements. The
results are compared to ab initio simulations and are discussed in terms of the in-plane and out-of-plane
interactions in the system.
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1. Introduction

Two-dimensional (2D) inorganic materials, such as α-MoO3, have attracted significant
attention lately by virtue of their distinct properties and highly specific surface areas [1]. The
room-temperature (RT)-stable orthorhombic α-MoO3 phase is a wide-bandgap (2.8–3.2 eV)
semiconductor of great practical interest mainly due to its anisotropic layered structure with
weak interaction between (010) planes. Due to these structural characteristics, α-MoO3
performs well in applications such as solar cells [1], catalysis [2], gas sensing [3], field
emission [4], lithium-ion batteries [5], and photochromic devices [6]. In particular, α-MoO3
films are used as an electrochromic layer in optical switches, electrochromic devices, and
smart windows [7].

Oxygen vacancies play a key role in the physical properties of Mo oxides and their
electrical conductivity by introducing gap states and influencing the optical bandgap. The
oxygen-defect concentration is controlled by the oxygen partial pressure and preparation
temperatures during synthesis, which in turn influences the crystal morphology. In this
regard, thermal treatment under a low oxygen partial pressure, ion implantation, or ultra-
violet (UV) irradiation of MoO3 induces oxygen defects, leading to MoO3−x [8]. Moreover,
an appropriate combination of several Mo oxides or an adequate distribution of Mo ions
with different oxidation states may lead to materials with emergent electronic and optical
properties. For instance, MoO3 is a transparent semiconductor, whereas MoO2 is a metallic
conductor. To gain deeper insight into these phenomena, a systematic investigation into the
relationship between the stoichiometry and electronic structure over the range of oxidation
states of MoO3 and MoO3−x is urgently required.

To tune the characteristics of α-MoO3, doping with several cations (e.g., In cations)
has been proposed [9]. Moreover, doped and undoped samples have been studied via
conventional characterization methods. Strong and stable RT photoluminescence has been
achieved in MoO3 crystals doped with Er and Eu by ion implantation [10]. These results
motivated our present study to further investigate the structural properties of samples
via ion implantation. For instance, Pereira et al. implanted oxygen ions at RT to modify
the electrical and structural properties of α-MoO3 crystals [11]. The samples were also
characterized after exposure to UV and proton-beam irradiation [12]. The creation of
electron-hole pairs and the adsorption and desorption of oxygen molecules at the surface of
the samples have been associated with variations in conductivity. The authors (Pereira et al.)
further suggest that tuning the electrical properties by ion implantation offers possibilities
for novel device designs.

The physics behind the multiple above-mentioned applications is linked to the material
phenomenology, which includes defects such as oxygen vacancies, point defects, and
impurity doping, all of which can be studied by Mössbauer spectroscopy (MS), as shown
in earlier studies [13–15].

In an early 57Fe MS study by Zhetbaev et al. on the formation kinetics of Mo oxides [13],
a 99.5% Mo foil coated with a 57Co isotope was subjected to different annealing atmospheres,
both in hydrogen and in air. All measurements were performed at RT. The MoO3 spectrum
obtained after annealing at 700 ◦C presents two doublets. The authors present hyperfine
parameters relative to the emission scale and relative to 57Fe/Co in Cr metal. After adjusting
for the reference scale [16] for α-Fe and changing the sign to represent a conventional
isomer-shift scale, the one doublet has an isomer shift δRT1 = 1.19 mm/s with a quadrupole
splitting ∆E1 = 1.20 mm/s while the second has δRT2 = 0.21 mm/s with ∆E2 = 0.75 mm/s,
corresponding to the Fe2+ and Fe3+ states in a ratio of approximately 3:1. The authors also
report that oxidation in air produces molybdenum with valences of 4+ and 6+, with other
valence states making no significant contribution [13].
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Effects of Fe Doping in MoOx

Ab initio simulations of the effects of Fe doping of MoOx indicate that Fe on substitu-
tional Mo sites exhibits a compensating behavior, since Fe can act as a donor under p-type
conditions and as an acceptor under n-type conditions [17,18].

Conventional characterization of Fe-doped MoO2 films reveals resistivity minima and
negative magnetoresistance below the resistive minima temperature [19]. This phenomenon
is attributed to either weak localization or Kondo scattering of the conduction electrons
from Fe impurities [19].

An appropriate amount of Fe doping can improve the gas-sensing properties of the
system, notably at low operating temperatures [18]. The great advantage of presenting
a stratified structure is that different dopants can be incorporated into the gaps between
the layers in the crystal lattice, a mechanism that is essential for the electrochromic and
catalytic applications of α-MoO3 [10].

Motivated by the interesting properties arising from stoichiometry dependencies, we
used 57Fe emission Mössbauer spectroscopy (eMS) to study highly crystalline molybdenum
trioxide lamellar samples with implanted 57Mn. Particular attention was given to the
influence of the incorporated Fe probe in different configurations in the α-MoO3 system,
with the results supported by ab initio simulations.

2. Materials and Methods

α-MoO3 lamella single crystals were grown by sublimation with the growth conditions
optimized following the methods described in a previous work [10]. Pure Mo powder was
compacted under a compressive load to form disks, which were inserted into a quartz tube
and annealed in air at 750 ◦C for 10 h in a horizontal tube furnace. Under these conditions,
numerous high-quality α-MoO3 lamella crystals were deposited on the cooler part of the
internal wall of the quartz tube. Scanning electron microscopy (SEM) (Madrid, Spain),
energy-dispersive X-ray spectroscopy (EDX-SEM), X-ray diffraction (XRD), and micro-
Raman characterizations of the samples were performed at RT before implantation of the
57Mn ions. The XRD measurements were carried out on a Philips X’Pert PRO diffractometer
(Madrid, Spain) using Cu Kα radiation. The micro-Raman measurements were carried out
in a Horiba Jobin-Yvon LabRAM HR800 system (Madrid, Spain), in which the samples
were excited by a 633 nm He-Ne laser on an Olympus BX41 confocal microscope with a
100× objective. The spectral resolution of the system used was approximately 1 cm−1.

57Fe eMS measurements [20,21] were performed at the ISOLDE-CERN facility [22,23],
where the parent radioactive isotope was produced with 1.4 GeV proton-induced fission
in a heated UC2 target. Mass-separated 57Mn ions were then implanted with an energy
of 50 keV into the samples at RT. Emission Mössbauer spectra were recorded using a
resonance detector equipped with a 57Fe-enriched stainless-steel electrode mounted on a
conventional drive system outside the implantation chamber at 60◦ relative to the sample
normal. The implantation fluence was less than 2 × 1011 57Mn ions/cm2, which is a dilute
concentration [14,24]. SRIM simulations give an average implantation depth of the order
of 30 nm [25]. Estimates of the sample volume that turns amorphous upon implantation
were determined from angular-dependent studies in which the sample holder was rotated
to acquire data at emission angles of 0◦, 30◦, and 60◦ (no rotation) relative to the sample
normal (normal to the lamellar plane). Figure 1a illustrates the orientation of flakes mounted
relative to the incident Mn beam, and Figure 1b provides a sketch of the top view of the
implantation set-up used to identify the incident and emission angles involved.
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Figure 1. (a) Schematic view showing the orientation of the samples relative to the direction of the
57Mn beam. (b) Top view of the experimental set-up indicating the γ-emission angle θ.

The ab initio simulations used the Vienna ab initio simulation package [26], with the
projector augmented-wave method [27]. The electron configurations considered were 4p,
4d, and 5s for Mo; 3p, 3d, and 4s for Fe; and 2s and 2p for O. The Perdew–Burke–Ernzerhof
generalized gradient approximation exchange-correlation approximation was used [28],
with an additional U term of 4.38 eV at Mo d orbitals and 3 eV at Fe d orbitals to better
describe these highly correlated states [29]. The plane waves were expanded with an energy
cut-off of 520 eV, and a Γ-centered Monkhorst–Pack k-point grid of 1 × 9 × 9 k points was
used for the unit cell, with similar densities for supercells. The forces were minimized to
less than 0.01 eV/Å.

3. Results

Figure 2 shows the SEM results for a sample (lamellar crystals), with 400 and 200 µm
scale bars. Although α-MoO3 is a 2D material, the crystals investigated herein were
0.5–5-µm thick. Widths typically exceed 300 µm, and lengths can reach 1 cm.
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The long-range and short-range structural information of the as-grown crystals was
characterized by XRD and micro-Raman spectroscopy, respectively. Figure 3a shows the
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chemical composition of the samples obtained via SEM-EDX microanalysis, which revealed
no other elements but Mo and O, besides a weak C signal from the graphite tape used
to stick the sample to the SEM sample holder. The as-grown α-MoO3 crystals showed
a characteristic layered structure. Based on the crystal morphology, a two-dimensional
layer-by-layer mechanism has been proposed to account for the nucleation and growth of
this kind of oxide crystals. In fact, from an energy perspective, planar growth rates along
the axes of the crystal follow the sequence {001} > {100} > {010}. Hence, it is highly favorable
for α-MoO3 crystals to grow along the [1] direction with the largest exposed surface of {010}
facets [30], in agreement with our XRD patterns.
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Figure 3b shows an XRD pattern of the samples. The spectrum was plotted on a
logarithmic scale to show the low-intensity diffraction maxima. All strong and sharp
diffraction maxima can be indexed to orthorhombic α-MoO3 (JCPDS 05-0508). A clear
preferential (0k0) orientation is apparent, consistent with the 2D structure and growth
habits of this oxide [31,32]. No other phases are evident in our XRD measurements. The
lattice parameters determined were a = 13.878 Å, b = 3.696 Å, and c = 3.961, in very good
agreement with file JCPDS 05-0508.

Figure 3c presents a representative Raman spectrum of the as-grown crystals. All
observed bands are unambiguously attributed to the orthorhombic α-MoO3 phase [32,33].
Peaks appear to be centered at 996 (Ag, υas M=O stretch), 819 (Ag, υs M=O stretch), 667
(B2g, B3g, υas O–M–O stretch), 472 (Ag, υas O–M–O stretch and bend), 380 (B1g, δ O–M–O
scissor), 365 (A1g, δ O–M–O scissor), 338 (Ag, B1g, δ O–M–O bend), 283 (B2g, δ O=M=O
wagging), 217 (Ag, rotational rigid MoO4 chain mode, Rc), 198 (B2g, τ O=Mo=O twist),
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158 (Ag/B1g, translational rigid MoO4 chain mode, Tb), 129 (B3g, translational rigid MoO4
chain mode, Tc), 116 (B2g, translational rigid MoO4 chain mode, Tc), 99 (B2g, translational
rigid MoO4 chain mode, Ta), and 83 cm−1 (Ag, translational rigid MoO4 chain mode, Ta).

The combination of XRD and Raman spectroscopy provides definitive evidence of the
phase purity and crystal quality of the investigated material prior to the eMS measurements.
Moreover, Raman measurements were carried out in a system equipped with a confocal
microscope, which provided spatial resolution and allowed us to check that no differences
were found, either in terms of the peak shifts or widths, between spectra measured for
different crystals or at different spots of the same sample.

Figure 4 presents the eMS spectra obtained at 0◦, 30◦, and 60◦. Overall, the spectra
can be fit with a quadrupole-splitting distribution (D1) with parameters (Table 1) typical
of ionic Fe2+ [13]. Complete fits to the data require a second component (D2) due to Fe3+

ions in unresolved local environments. D2 seems to have a peak intensity of approximately
v~−0.3 mm/s and gives rise to intensities in the wings of the spectra, which is most
likely due to Fe3+ showing slow paramagnetic relaxations, as reported for earlier eMS
measurements on metal oxides [34,35]. The intensities of the two peaks of D1 clearly
display angular dependence.
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Figure 4. 57Fe emission Mössbauer spectra of α-MoO3 lamella crystals obtained at room temperature
after implantation of 57Mn at (a) 0◦, (b) 30◦, and (c) 60◦.

Table 1. Experimental hyperfine parameters obtained at RT for D1.

Emission Angle 0◦

D1

δ (mm/s) 0.81(3)

<∆EQ> (mm/s) 1.81(6)

Area (%) 69(6)

The Fe2+ component was assumed to have the same distribution in all spectra and
was simulated using a probability function P(∆EQ), as shown in Figure 5, with three linear
segments [36] in the Vinda analysis package [37]. The Fe2+ component has an isomer shift
<δRT> = 0.81(3) mm/s and an average quadrupole splitting <∆EQ> = 1.81(6) mm/s with a
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standard deviation of σ(P(∆EQ)) = 0.78(6) mm/s, meaning that the relative distribution [35]
of the quadrupole splitting was σ(P(∆EQ))/<∆EQ> = 43(4)%. Such a high value would,
under normal circumstances, be attributed to amorphous local surroundings, but the
angular dependence suggests that the probe atoms sensed the crystalline structure of the
host. In the final analysis, the area fraction of the Fe2+ component was set to be the same in
all spectra: 69(6)%.
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Due to the underlying Fe3+ component (D2), it was not possible to determine the area
ratio of the legs of the two emission peaks of the doublets in a free fitting, so restrictions
had to be introduced. For D1, the ratio of the spectral area of the left emission peak (Al) to
that of the right emission peak (Ar) is expressed as [38]:

Al
Ar

= Q( f (θ)− 1) + 1, (1)

with:

f (θ) =
3 + 3 cos2 θ

5 − 3 cos2 θ
, (2)

where Q is a ‘quality’ factor for the angular dependence (Q = 1 represents full angular
dependence for the VZZ || sample normal, and Q = 0 represents the polycrystalline case).
The Q = 0.08(2) value obtained from the fit for D1 is a small but significant departure
from the polycrystalline case. The hyperfine parameters of D1 determined from our
analysis are listed in Table 1. The parameters do not show a significant difference with the
emission angle.

A first simulation step was to optimize the structural parameters for a pure α-MoO3
unit cell, obtaining the lattice parameters a = 14.43 Å, b = 3.76 Å, and c = 3.97 Å, which are
close to the values reported from the XRD measurements performed at room temperature:
a = 13.85 Å, b = 3.69 Å, and c = 3.96 Å [39]. The lattice parameters determined from our XRD
data were a = 13.878 Å, b = 3.696 Å, and c = 3.961 Å and allow a more reasonable comparison
with our experiments, which were performed at RT. We then constructed supercells from
the optimized cell, 1 × 3 × 3, with the substitution of one Fe for one of the equivalent Mo
sites. The final structure was calculated by fully optimizing the atomic parameters while
keeping the lattice parameters fixed to the values of the optimized state without Fe. We
also considered the case where oxygen vacancies were close to the implanted Fe probe, and
the case of having the Fe probe in the van der Waals gap (see Figures 6 and 7).
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Figure 7. (a) Example of the local complexity of the α-MoO3 unit cell (image produced by [41]).
(b) Schematic of three non-equivalent O positions labeled with different colors (image produced
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After relaxation, for the Fe probe located in the van der Waals gap, we obtained two
positions between layers (see Figure 6), with one of slightly greater stability. We, therefore,
calculated three additional configurations considering the subtraction of one, two, and
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three electrons. Note that reducing the number of electrons in the calculation produced
large changes in the electric-field gradient (EFG) in this case.

For oxygen vacancies close to the implanted Fe probe, all possible combinations
of nearest-neighbor O vacancies were evaluated, where O(1), O(2), and O(3) denote
singly, 2-fold, and 3-fold coordinated oxygen sites, respectively (see Figure 7). The re-
sults are shown in Table 2. The EFG can be converted to the quadrupole splitting using
Equations (3) and (4) [42,43] and using Q(57Fe) = 0.17b [43], Ie = 3/2, E0 = 14.4 keV for the
57Fe resonant transition:

∆EQ = 6
∣∣∣∣AQ

∣∣∣∣√1 + η2/3, (3)

AQ = ecQVzz/[4Ie(2Ie − 1)E0]. (4)

Table 2. Results for the calculation in 1 × 3 × 3 supercells for the Fe probe in different configurations.
Calculated Vzz, asymmetry parameter η, electric quadrupole splitting ∆EQ, and total energy per
formula unit (Fe/Mo atoms, there are 36 formula units) relative to the most stable state.

Fe Configuration Vzz (1021 V/m2) η ∆EQ (mm/s) Energy
(meV/f.u.)

Substitutional to Mo 2.83 0.30 0.51 –
Substitutional to Mo with

O(1) vacancy 10.18 0.00 1.81 0

Substitutional to Mo with
O(2) vacancies −7.94 0.15 1.41 39

Substitutional to Mo with
O(3) vacancy −3.90 0.40 0.71 96

The total energies obtained were compared with the cases with the same numbers of
atoms so that only the atomic positions changed, making for a direct comparison. Energies
for cases with one vacancy were compared with each other to find the most stable case.
O(1) was the most stable vacancy.

The case with the O(1) vacancy is not only the most stable of those with one oxygen
vacancy but also the case with the calculated quadrupole splitting closest to the average
experimental value (experimental <∆EQ> = 1.81(6) mm/s and calculated ∆ = 1.81 mm/s),
further suggesting that this was the most likely arrangement in the experiments. In general,
ab initio simulations are performed for 0 K, and our measurements were carried out
at RT. It is rare to find ab initio simulations of EFGs for higher temperatures, since the
commonly used density functional theory is valid strictly only for 0 K. Consideration of
the temperature would require, for example, ab initio molecular dynamics for accurate
interpretation of the experimental results. As mentioned before, optimized RT α-MoO3
lattice parameters were used here in all configurations, and then the internal parameters
were relaxed by force optimization to a force limit below 1 mRy/Å. This procedure is
considerably fast [44] and is different from molecular dynamics approaches [45].

4. Discussion
4.1. Local Environment 1 (D1)

For D1, the isomer shift <δRT> = 0.81(3) mm/s and the average quadrupole splitting
<∆EQ> = 1.81 mm/s. According to our simulations, the observed hyperfine interaction
would correspond to Fe at substitutional Mo sites with one neighboring O(1) vacancy.
Given the nature of metal oxides, the Mo–O bonding energy can be easily overcome by
direct implantation damage, producing nearby vacancies [46]. It is important to emphasize
that the density functional theory employed in this work is valid strictly for 0 K. Therefore,
it is not possible to directly compare our experimental value with the simulated one.
Consideration of the temperature would require, for example, ab initio molecular dynamics,
which will be part of our future work. To the best of our knowledge, there is no temperature-
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dependence study in the literature that can provide the EFG trend close to RT for this
complex system.

In the results presented here, D1 has an angular dependency, as can be seen by the
dependence of the intensity of the two emission peaks on the emission angle. The angular
dependence for the quadrupole splitting distribution of our measurements is due to Fe2+

and not to Fe3+.

4.2. Local Environment 2 (D2)

The more likely interpretation of this component is an unresolved Fe3+ component,
showing slow paramagnetic relaxations [34,35,47]. During ion implantation, the formation
of various defect types, such as numerous interstitials and vacancies, should be considered,
especially in the case of the broad distribution arising from the doublet, which is charac-
teristic of high-spin Fe3+. The present results confirm that the angular dependence shows
that the probe atoms are in a crystalline environment for component D1. However, it is
difficult to state anything quantitative for D2. The data from [13] suggested the presence
of a fast-relaxing Fe3+ component (doublet), which implies that the Fe3+ was not dilute in
their sample. Since, in our case, we have a very diluted implantation regime [14,24], it is
not possible to compare our data with those reported in [13].

5. Conclusions

The structural properties of high-crystalline-quality α-MoO3 lamellar samples were
studied via ion implantation at RT through eMS experiments at ISOLDE-CERN, follow-
ing implantation of 57Mn (t1/2 = 1.5 min), which decays to the 14.4 keV Mössbauer state.
The spectra were fit to two broadened doublets. The results with Fe2+ show evidence of
the single crystallinity of the local environment through the angular dependence of the
quadrupole interaction for D1. The obtained hyperfine parameters indicate that the asym-
metric doublet has a typical isomer shift of high-spin Fe2+, which is <δRT> = 0.8(3) mm/s,
and the average quadrupole splitting <∆EQ> = 1.81(6) mm/s. The second component is
characterized by high-spin Fe3+. The large quadrupole splitting of Fe2+ is likely due to a
relatively highly distorted configuration near the implanted probe ion. Different configu-
rations for the Fe probe were considered for the ab initio simulations, including Fe at the
substitutional Mo site with and without O vacancies. Additionally, simulations considering
the Fe probe between layers were performed with different electronic arrangements. The
case of Fe at the substitutional Mo site with one vacancy (O1) is not only the most stable
configuration among those with one oxygen vacancy but is also the configuration with
the calculated quadrupole splitting closest to the average experimental value. However,
it is not possible to assign this configuration to the case detected in our experiments with
perfect confidence.

The combination of SEM, XRD, and Raman spectroscopy provided evidence of the
phase purity, morphology, and crystal quality of the investigated material prior to the eMS
measurements.

Ion implantation is a widely used industrial process because it is very easy to re-
produce, and the defects introduced in the system can be of technological advantage. In
particular, the physical properties of an impurity in the α-MoO3 system depend predom-
inantly on its lattice location. The site of implanted dopants can be determined via the
performed eMS measurements combined with ab initio simulations. Therefore, the current
study provides a better understanding of the physical properties of Mn/Fe impurities in
the α-MoO3 system. The next step is to study the interplay between the thermal effects of
post-implantation annealing and the lattice location of Fe and possible defects [48].
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