58 research outputs found

    Developing a Pilot Case and Modelling the Development of a Large European CO<sub>2</sub> Transport Infrastructure -The GATEWAY H2020 Project

    Get PDF
    The H2020 GATEWAY project aims to develop a comprehensive model Pilot Case which, intentionally, will pave the ground for CCS deployment in Europe. It will result from the assessment of, technical, commercial, judicial and societal issues related to a future CO2 transport infrastructure. The Pilot Case derived on this basis, will emphasize a gateway for CO2 transport in the North Sea Basin. Four potential pilot cases have been evaluated through a combination of techno-economic modelling of the individual cases and evaluation against more qualitative criteria. The chosen Pilot Case, Rotterdam Nucleus, will be refined and developed during the remaining period of the GATEWAY project. To maximise impact, the GATEWAY project adapts its work to lay the foundation for a future application to a European ‘Project of Common Interest’ (PCI). Continuous dialogue with the most relevant stakeholders is an important part of GATEWAY, as a Coordination and Support Action (CSA) H2020 project

    Highlights of the ERS Lung Science Conference 2022

    Get PDF
    This article presents the highlights of the ERS Lung Science Conference 2022, including a session organised by the Early Career Member Committee (ECMC) dedicated to career development https://bit.ly/3tarCXc Every year, the European Respiratory Society (ERS) organises the Lung Science Conference (LSC), in Estoril, to discuss basic and translational science. The topic of the 20th LSC was “Mucosal immunology of the lung: balancing protective immunity and chronic inflammation”. This was the first time that the LSC was organised as a hybrid congress with both in person and online attendance. In addition to an outstanding scientific programme, the LSC provides excellent opportunities for career development and inclusion of early career members (ECMs). All scientific and poster sessions are chaired by an ECM who is paired with a senior faculty to allow ECMs to become acquainted with session chairing, and there is a session organised by the Early Career Member Committee (ECMC) dedicated to career development. Moreover, travel bursaries are made available to abstract authors, and all bursary recipients and first-time attendees are invited to take part in a mentorship lunch. In this article, we provide the names of the ECM awardees and describe the scientific highlights of the LSC 2022 for those who could not attend.info:eu-repo/semantics/publishedVersio

    Exercise Intensity and Duration Effects on In Vivo Immunity

    Get PDF
    PURPOSE: To examine the effects of intensity and duration of exercise stress on induction of in vivo immunity in humans using experimental contact hypersensitivity (CHS) with the novel antigen diphenylcyclopropenone (DPCP). METHODS: Sixty-four healthy males completed either 30 min running at 60% V O2peak (30MI), 30 min running at 80% V O2peak (30HI), 120 min running at 60% V O2peak (120MI), or seated rest (CON). Twenty min later, the subjects received a sensitizing dose of DPCP; and 4 wk later, the strength of immune reactivity was quantified by measuring the cutaneous responses to a low dose-series challenge with DPCP on the upper inner arm. Circulating epinephrine, norepinephrine and cortisol were measured before, after, and 1 h after exercise or CON. Next, to understand better whether the decrease in CHS response on 120MI was due to local inflammatory or T-cell-mediated processes, in a crossover design, 11 healthy males performed 120MI and CON, and cutaneous responses to a dose series of the irritant, croton oil (CO), were assessed on the upper inner arm. RESULTS: Immune induction by DPCP was impaired by 120MI (skinfold thickness -67% vs CON; P < 0.05). However, immune induction was unaffected by 30MI and 30HI despite elevated circulating catecholamines (30HI vs pre: P < 0.01) and greater circulating cortisol post 30HI (vs CON; P < 0.01). There was no effect of 120MI on skin irritant responses to CO. CONCLUSIONS: Prolonged moderate-intensity exercise, but not short-lasting high- or short-lasting moderate-intensity exercise, decreases the induction of in vivo immunity. No effect of prolonged moderate-intensity exercise on the skin's response to irritant challenge points toward a suppression of cell-mediated immunity in the observed decrease in CHS. Diphenylcyclopropenone provides an attractive tool to assess the effect of exercise on in vivo immunity

    High-starch diets alter equine faecal microbiota and increase behavioural reactivity

    Get PDF
    Gut microbiota have been associated with health, disease and behaviour in several species and are an important link in gut-brain axis communication. Diet plays a key role in affecting the composition of gut microbiota. In horses, high-starch diets alter the hindgut microbiota. High-starch diets are also associated with increased behavioural reactivity in horses. These changes in microbiota and behaviour may be associated. This study compares the faecal microbiota and behaviour of 10 naïve ponies. A cross-over design was used with experimental groups fed high-starch (HS) or high-fibre (HF) diets. Results showed that ponies were more reactive and less settled when being fed the HS diet compared to the HF diet. Irrespective of diet, the bacterial profile was dominated by two main phyla, Firmicutes, closely followed by Bacteroidetes. However, at lower taxonomic levels multivariate analysis of 16S rRNA gene sequencing data showed diet affected faecal microbial community structure. The abundance of 85 OTUs differed significantly related to diet. Correlative relationships exist between dietary induced alterations to faecal microbiota and behaviour. Results demonstrate a clear link between diet, faecal microbial community composition and behaviour. Dietary induced alterations to gut microbiota play a role in affecting the behaviour of the host

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling
    corecore