801 research outputs found
A high resolution study of continuous pulsations in the European sector
Complex demodulation has been described in detail and applied to Pi2 pulsations in a previous paper by Beamish et al. (1979). The technique is now extended to demonstrate spatio temporal variations in the fundamental characteristics of Pc3 and Pc4 pulsations along a meridional profile extending from the U.K. to Iceland. With the exception of a high latitude Pc4 coupled resonance the results are consistent with a -90° Hughes rotation (introduced by the ionosphere) of magnetospheric toroidal line resonances. Furthermore, the ionosphere appears capable of smoothing away the polarisation reversal which would be expected across such amplitude maxima within the plasmasphere. However, a toroidal line resonance in the Pc3 period range about which a sense of polarisation reversal is clearly observed on the ground is suggested as occurring at the plasmapause. This is accounted for in terms of the width of the resonance structure
Complex demodulation applied to Pi2 geomagnetic pulsations
The spectral technique of complex demodulation is applied to Pi2 pulsations recorded along a meridional profile. The technique provides instantaneous values of amplitude and phase and allows frequency dispersion to be taken into account. The variations of magnetospheric wave polarization parameters are observed as a function of both space and time. The results are directly compared with recent theories of the resonance of geomagnetic field lines and the effects of the ionosphere on ground based observations. The theoretical predictions are tested and the experimental results indicate that the night-time ionosphere is capable of a controlling influence on the source characteristics of these magnetospheric waves in the plasmapause region
Comparison of data acquisition methods for the identification and quantification of histone post-translational modifications on a Q Exactive HF hybrid quadrupole Orbitrap mass spectrometer.
RATIONALE: Histone PTMs play key roles in regulating eukaryotic gene expression. Mass spectrometry (MS) has emerged as a powerful method to characterize and quantify histone PTMs as it allows unbiased identification and quantification of multiple histone PTMs including combinations of the modifications present. METHODS: In this study we compared a range of data acquisition methods for the identification and quantification of the histone PTMs using a Q Exactive HF Orbitrap. We compared three different data-dependent analysis (DDA) methods with MS2 resolutions of 120K, 60K, 30K. We also compared a range of data-independent analysis (DIA) methods using MS2 isolation windows of 20 m/z and DIAvw to identify and quantify histone PTMs in Chinese Hamster Ovary (CHO) cells. RESULTS: The increased number of MS2 scans afforded by the lower resolution methods resulted in a higher number of queries, peptide sequence matches (PSMs) and a higher number of peptide proteoforms with a Mascot Ion score greater than 46. No difference in the proportion of peptide proteoforms with Delta scores >17 was observed. Comparing the data acquisition methods increased repeatability in terms of lower CVs afforded by DIA MS1 60K MS2 30K 20m/z isolation windows was observed. CONCLUSION: We observed that DIA which offers advantages in flexibility and identification of isobaric peptide proteoforms performs as well as DDA in the analysis of histone PTMs. We were able to identify 71 modified histone peptides for histone H3 and H4 and quantified 64 across each of the different acquisition methods
The Hamiltonian formulation of General Relativity: myths and reality
A conventional wisdom often perpetuated in the literature states that: (i) a
3+1 decomposition of space-time into space and time is synonymous with the
canonical treatment and this decomposition is essential for any Hamiltonian
formulation of General Relativity (GR); (ii) the canonical treatment
unavoidably breaks the symmetry between space and time in GR and the resulting
algebra of constraints is not the algebra of four-dimensional diffeomorphism;
(iii) according to some authors this algebra allows one to derive only spatial
diffeomorphism or, according to others, a specific field-dependent and
non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac
[Proc. Roy. Soc. A 246 (1958) 333] and of ADM [Arnowitt, Deser and Misner, in
"Gravitation: An Introduction to Current Research" (1962) 227] of the canonical
structure of GR are equivalent. We provide some general reasons why these
statements should be questioned. Points (i-iii) have been shown to be incorrect
in [Kiriushcheva et al., Phys. Lett. A 372 (2008) 5101] and now we thoroughly
re-examine all steps of the Dirac Hamiltonian formulation of GR. We show that
points (i-iii) above cannot be attributed to the Dirac Hamiltonian formulation
of GR. We also demonstrate that ADM and Dirac formulations are related by a
transformation of phase-space variables from the metric to lapse
and shift functions and the three-metric , which is not canonical. This
proves that point (iv) is incorrect. Points (i-iii) are mere consequences of
using a non-canonical change of variables and are not an intrinsic property of
either the Hamilton-Dirac approach to constrained systems or Einstein's theory
itself.Comment: References are added and updated, Introduction is extended,
Subsection 3.5 is added, 83 pages; corresponds to the published versio
Coastal upwelling in the RĂas Bajas, NW Spain: Contrasting the benthic regimes of RĂas de Arosa and de Muros
VersiĂłn del editor0,986
Effects of d-α-Tocopherol and Dietary Energy on Growth and Health of Pre-Ruminant Dairy Calves
Newborn Holstein bull calves were fed milk to support low or moderate growth and were supplemented with a complement of vitamins A, D, and E. The objective of the study was to determine the effects of dietary energy and vitamin supplementation on inflammation at the whole-body level. Calves were assigned randomly to one of four treatment groups (low growth, not vitamin supplemented; low growth, vitamin supplemented; moderate growth, not vitamin supplemented; moderate growth, vitamin supplemented) for five weeks. Vitamin supplementation tended to improve average daily gain in moderate-growth calves and significantly increased concentrations of retinol, 25-(OH)-vitamin D, and α-tocopherol in plasma in supplemented groups. Moderate growth calves exhibited lower concentrations of α-tocopherol in plasma and higher concentrations of serum haptoglobin, which is a protein associated with chronic inflammation. All calves exhibited elevated concentrations of the more acute indicator of inflammation, serum amyloid A, during weeks 1-3. These results indicate potential roles for vitamins A, D, and E in moderation of pro-inflammatory responses early in life
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
Search for Higgs Bosons in e+e- Collisions at 183 GeV
The data collected by the OPAL experiment at sqrts=183 GeV were used to
search for Higgs bosons which are predicted by the Standard Model and various
extensions, such as general models with two Higgs field doublets and the
Minimal Supersymmetric Standard Model (MSSM). The data correspond to an
integrated luminosity of approximately 54pb-1. None of the searches for neutral
and charged Higgs bosons have revealed an excess of events beyond the expected
background. This negative outcome, in combination with similar results from
searches at lower energies, leads to new limits for the Higgs boson masses and
other model parameters. In particular, the 95% confidence level lower limit for
the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons
can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA >
72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and
soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for
minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM
parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European
Physical Journal
A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays
The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where
Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL
detector at LEP. Lambda_b are selected by the presence of energetic Lambda
particles in bottom events tagged by the presence of displaced secondary
vertices. A fit to the momenta of the Lambda particles separates signal from B
meson and fragmentation backgrounds. The measured product branching ratio is
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))%
Combined with a previous OPAL measurement, one obtains
f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European
Physical Journal
- …