447 research outputs found

    Learning climate and workplace learning: Does work restructuring make a difference?

    Get PDF
    In the current study, we propose that organizational learning climate in terms of facilitation learning climate, appreciation learning climate, and error-avoidance climate has the capacity to enhance employees’ level of newly acquired competences. Additionally, we investigated whether this relationship holds when employees face work-restructuring. Structural Equation Modeling was used to test the hypotheses on a large sample of the Dutch working population (N = 1013). The results showed that work restructuring moderated the hypothesized relationships. Under conditions of high restructuring, facilitation learning climate was an important predictor of learning outcomes; yet, under conditions of low work restructuring, appreciation learning climate was more effective. The current paper contributes to research on organizational change and workplace learning by providing evidence that organizational change can impact the way organizational learning climate supports employee learning

    Paratesticular desmoplastic small round cell tumour: an unusual tumour with an unusual fusion; cytogenetic and molecular genetic analysis combining RT-PCR and COBRA-FISH

    Get PDF
    Desmoplastic small round cell tumour is a rare malignant tumour with a male to female ratio of 4:1. It manifests mostly at serosal sites. Here we present a case of a 28-year-old male patient, who presented with a fast growing paratesticular mass. On biopsy nests and cords of small round cells, without a clear morphological lineage of differentiation were seen. Occasionally desmoplatic small round cell tumour shows different lines of differentiation. An unequivocal histological diagnosis might be difficult in such cases. Here we demonstrate by a combination of methods the characteristic immunohistochemical profile and - albeit unusual - molecular background and discuss the eventual link with Ewing sarcoma

    Next Generation Hydro Software

    Full text link
    A few years ago Deltares started a large multidisciplinary project named Next Generation Hydro Software. The main focus of the project is to improve, harmonize and integrate existing hydro software that has been developed throughout the years. Important technological innovations include development of the new computational core D-Flow Flexible Mesh, as well as the user-friendly, open modelling environment Delta Shell. The project involves more than 40 scientists and software engineers. The new integrated system will allow both water managers and modellers to do their work better and faster. The unique characteristic of the project is that it focuses on the possibility of setting up integrated models of the whole aquatic chain from the source to the sea, resulting in complex model configurations. The challenges further increase because of the involvement of experts from many different fields within the aforementioned aquatic chain. Furthermore, the project addresses the complete workflow of a modeller, including model setup, calibration and validation. For this purpose the system includes new scientific visualization, analysis and interactive modeling tools that enable users to improve their understanding of the modelled processes. Applications of the system show the successful integration of 0D (lumped hydrological models and real-time control rules), 1D (river flow and water quality models) and 2D/3D model components (river, estuary and coastal areas). In this paper some of the preliminary results of the project are demonstrated, as well as its current status and a preview of possible future developments

    Watershed-Scale Drivers of Air-Water CO2 Exchanges in Two Lagoonal North Carolina (USA) Estuaries

    Get PDF
    Riverine loading of nutrients and organic matter act in concert to modulate CO2 fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO2 fluxes observed in two microtidal, lagoonal estuaries. Air-water CO2 fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO2 to the atmosphere, 12.5 and 16.3mmolCm(-2)d(-1) in the NeuseRE and NewRE, respectively. Large-scale pCO(2) variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO(2) undersaturation was observed at intermediate freshwater ages, between 2 and 3weeks. Biological controls on CO2 fluxes were obscured by variable inputs of river-borne CO2, which drove CO2 degassing in the river-dominated NeuseRE. Internally produced CO2 exceeded river-borne CO2 in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO2 fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO2 fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations. Plain Language Summary Estuaries release nearly as much CO2 to the atmosphere as is taken up over the continental shelf. However, estuarine emissions vary greatly across space and time, contributing significantly to the uncertainty of global carbon budgets. In this study, we assess spatial and temporal variability in CO2 emissions from adjacent estuaries in North Carolina, USA. These emissions varied across seasons and river discharge conditions but were relatively small when assessed as annual averages. Freshwater age (time freshwater spends in estuary before being flushed to ocean) was an important driver of CO2 dynamics in both estuaries, due to its role in regulating nutrient, DOC, and DIC supply while also affecting the rate at which phytoplankton are flushed from the system. While the relationship between freshwater age and CO2 was similar for both estuaries, we show that the various external and internal inputs of CO2 were quite different. Riverine CO2 inputs drove CO2 emissions in the river-dominated estuary, while internally produced CO2 (from community respiration) was more important in the marine-dominated estuary. We also demonstrate that poorly buffered regions in both estuaries are particularly vulnerable to acidification, with potentially negative impacts on calcifying organisms

    A RNA Interference Screen Identifies the Protein Phosphatase 2A Subunit PR55γ as a Stress-Sensitive Inhibitor of c-SRC

    Get PDF
    Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ

    Survey of moniliformin in wheat- and corn-based products using a straightforward analytical method

    Get PDF
    A straightforward analytical method was developed and validated to determine the mycotoxin moniliformin in cereal-based foods. Moniliformin is extracted with water and quantified with liquid chromatography tandem mass spectrometry, and its presence confirmed with liquid chromatography-Orbitrap-high-resolution mass spectrometry. The method was validated for flour, bread, pasta and maize samples in terms of linearity, matrix effect, recovery, repeatability and limit of quantification. Quantification was conducted by matrix-matched calibration. Positive samples were confirmed by standard addition. Recovery ranged from 77 to 114% and repeatability from 1 to 14%. The limit of quantification, defined as the lowest concentration tested at which the validation criteria of recovery and repeatability were fulfilled, was 10 µg/kg. The method was applied to 102 cereal-based food samples collected in the Netherlands and Germany. Moniliformin was not detected in bread samples. One of 22 flour samples contained moniliformin at 10.6 µg/kg. Moniliformin occurred in seven out of 25 pasta samples at levels around 10 µg/kg. Moniliformin (MON) was present in eight out of 23 maize products at levels ranging from 12 to 207 µg/kg

    Perturbed Rotations of a Rigid Body Close to the Lagrange Case under the Action of Unsteady Perturbation Torques

    Get PDF
    Perturbed rotations of a rigid body close to the Lagrange case under the action of perturbation torques slowly varying in time are investigated. Conditions are presented for the possibility of averaging the equations of motion with respect to the nutation angle and the averaged system of equations of motion is obtained. In the case of the rotational motion of the body in the linear-dissipative medium the numerical integration of the averaged system of equations is conducted

    Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells

    Get PDF
    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2 % under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten–bismuth vanadate (W:BiVO_4) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO_4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO_4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO_4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO_4 and the nc-Si:H cell
    corecore