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Abstract
Perturbed rotations of a rigid body close to the Lagrange case under the action of perturbation torques slowly 
varying in time are investigated. Conditions are presented for the possibility of averaging the equations of 
motion with respect to the nutation angle and the averaged system of equations of motion is obtained. In the 
case of the rotational motion of the body in the linear-dissipative medium the numerical integration of the 
averaged system of equations is conducted.
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Introduction

The authors investigated new problem of the motion of a rigid body about a fixed point under 
the action of perturbation torques of forces of different physical nature. The motion with the torque of 
external forces in Lagrange’s case is considered as a nonperturbed motion. The influence of the 
perturbations is determined by the averaging method for the Lagrange-Poisson motion [1, 2]. Papers 
[3-8] were devoted to the investigation of perturbed motions close to Lagrange motion. Paper [3] is a 
brief survey of some theoretical results in area of dynamics of the rigid body with one fixed point 
from view point of the applications to the mechanics of space flight. The authors investigated 
perturbed rotational motions of a rigid body that are close to regular precession in the Lagrange case 
when the restoring torque is constant [2, 4] and when the restoring torque depends on the nutation 
angle [5]. Perturbed rotations of a rigid body close to the regular precession in the Lagrange case 
under the action of restoring torque depending on slow time and nutation angle, as well as 
perturbation torque slowly varying in time, was studied in [6]. The motion of a symmetric heavy rigid 
body about a fixed point when the body is subjected to frictional forces due to a surrounding 
dissipative medium was considered in [7]. The motion of a slightly asymmetric heavy rigid body in 
the viscous medium was studied in [8].

In our paper a new approach is developed for the investigation of perturbed motions of 
Lagrange top for perturbation torques slowly varying in time. We develop an averaging procedure for 
system of the equations of motion of a rigid body under arbitrary initial conditions for perturbations 
admitting of averaging with respect to the nutation angle 0. An actual mechanical model of the 
perturbations, corresponding to the body’s motion in a medium with linear dissipation, is considered.

1. Statement of the problem and the unperturbed motion

Consider the motion of a dynamically symmetric heavy rigid body about a fixed point O under 
the action of perturbation torques of arbitrary nature. The equations of motion have the form:

252

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic National Technical University &quot;Kharkiv Polytechnic...

https://core.ac.uk/display/79659716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:d@ukr.net


L.D. Akulenko, T.A. Kozachenko et al.

Ap + (C -  A) qr = [isin0cosy + sM 1 
Aq + (A -  C) pr = -,«sm 0siny + sM 2
Cr = sM 3, M t = M t(p, q, r , y ,  0, y, z), i = 1,2,3 
y  = (p siny + q cosy)cosec0 , z = st

0 = p  c o sy -  q siny, y  = r -  (p  siny + q cosy)ctg0

(1)

Here p, q and r are the projections of the vector of angular velocity of the body onto the 
principal axes of inertia passing through the point O. The values sM i , i = 1,2,3 are the projections of 
the vector of the perturbation torques onto the same axes. They depend on the slow time z = s t , 
where t is time and s  is a small parameter (s  « 1 ) . The torques sM i are also 2n -periodic functions 
of the Eulerian angles y ,  y  and 0 . Here, A  is the equatorial and C is the axial moments of inertia of 
the body about the point O, A ^ C . It is assumed that the body is acted upon by a restoring torque 
whose maximum value is equal to and that is generated by a force of constant magnitude and 
direction, applied at the some point of the axis of dynamic symmetry. In the case of a heavy top we 
have n = m gl. Here m is the mass of the body, g is the acceleration due to gravity, and l is the 
distance from fixed point O to center of gravity of the body.

The problem is post of investigating the behavior of the solution of system (1) for nonzero 
values of the small parameter s  on a sufficiently long time interval t ~ s — . The averaging method [9] 
is used for solving the problem.

We derive some necessary relations for the unperturbed motion [2, 10], when s = 0 .
The first integrals of the equations of motion for the unperturbed system (1) are

Here Gz is the projection of the moment of momentum vector onto the vertical Oz , H  is the 
body’s total energy, r is the projection of the angular velocity vector onto the axis of dynamic 
symmetry, ci, i = 1,2,3 are arbitrary constants (c2 > -^ ) .

The expression for the nutation angle 0 in the unperturbed motion as a function of time t, of 
the motion integrals (2) and of arbitrary phase constant p  is known [2 , 10]

Here sn is the elliptic sine [11], k is the modulus of the elliptic functions, and u1, u2, u3 are 
real roots of the cubic polynomial

Relations between the roots of the polynomial Q(u) and first integrals (2) can be written in the 
following manner:

Gz = Asin0( p  siny + q cosy)+ Cr cos0 = c1

cos0 = u1 + (u2 -  u1)sn2 (at + p ) , -1  < u1 < u2 < 1 < u3 < +<» 

a = [ ^ ( u 3 -  u1) / (2A)] , sn (a t + p ) = sin am (a t + p , k ) 

k 1 = (u2 -  u1 )(u3 -  u1 ) 1, 0 < k 1 < 1

(3)

Q(u) = A-2 [(2H -  Cr2 -  2^u)(1 -  u2)A -  (Gz -  Cru )2 ] (4)

253



L.D. Akulenko, T.A. Kozachenko et al.

H  Cr1 C2 r1
Uy + U2 + U3 —------- ----- + _

1 2 p  2Ap 
GzCr ,u1u2 + u1u3 + u2u3 — —5------1 (5)
Ap

H  Cr2 G2

1  2p 2Ap

2. The averaging procedure

Let us reduce the equations of perturbed motion (1) to a form admitting of the application of the 
averaging method [9]. We pick out the slow and the fast variables. The first integrals (2) are the slow 
variables for perturbed motion (1). The fast variables are the angles of proper rotation q , of nutation 
9 , and of precession 1// .

We reduce the first three equations in (1) after several transformations to the form

Gz — s [(M1 sinq + M 2 cosq) sin 9 + M 3 cos 9]

H  — s(M 1 p  + M  2q + M 3 r) (6)

r — sC -1M 3, M t — M t (p ,q ,r ,^ ,9 ,q ,z ) , i —1,2,3

Here and in the last three equations in (1) it is implicit that the variables p, q, r have been 
expressed as functions of Gz, H , r, \y, 9, q  and have been substituted into (1) and (6). The initial 
values of the slow variables Gz, H , r can be computed from (2).

The right hand sides of (6) contain the three fast variables, which presents a difficulty for the 
application of the averaging method. To eliminate this difficulty we require that the right hand sides 
of (6) depend on only one fast variable, the nutation angle 9 , and be periodic functions of 9 of 
period 2n  , and have following structural properties of perturbed torque of forces

M1 sinq + M 2 cosq — M*(Gz, H , r ,r ,9 )
M1 p  + M  2q — M  *(Gz, H , r ,r ,9 )  (7)

M 3 — M  3*(Gz, H , r ,r ,9 )
M 1 — p f , M 1 — q f , M 3 — M 3*, f  — f  (Gz,H , r ,9 ,r)  (8)

We assume the fulfilment of the necessary and sufficient conditions (7) or, in particular, of the 
sufficient conditions (8), which encures the validity of relations (7). Then system (6) can be presented 
in the form

Gz — sF1 (Gz, H , r , t ,9 ) , F1 — Mj*sin9+ M 3*cos9 

H  — sF2 (Gz, H , r ,z ,9 ) , F2 — M  * + M 3*r (9)

r  —sF3 (Gz,H, r ,r ,9 ) , F3 — C"^M3*

Here F , F2, F3 are 2k  -periodic functions of 9 .
We propose to carry out the investigation of the perturbed motion in the slow variables 

ui, i —1,2,3. The slow variables Gz, H  and r can be expressed in terms of ui from (5) as follows 
[1, 2]
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Gz = S2 (A ^ ) n (u1 + u2 + u3 + u1u2u3 + S1R )1/2 sign (1 + u1u2 + u1u3 + u2u3) 

H  = 1  u \{u 1 + u2 + u3 )(1 + AC -  ̂ ) + (S1R -  u1u2u3 )(1 -  AC -  )J 

r = S2C-  (Ayu)12 (u1 + u2 + u3 + u1u2u3 -  S1R )1/2 

R  = |̂ (1 - uf )(1 - u I)(u32 -  1)J , S1 = sign(G2 - C2r2), S2 = signr

At the initial instant the quantities S1 and S2 are determined from the initial conditions for Gz 
and r . If during the motion one or both of the quantities G2 -  C2r 2 and r pass through zero, a 
change of sign is possible for S1 and S2, to determine which we can make use of the original system
(9).

The desired system of equations for the slow variables takes the form after some 
transformations

du. n 
— i  = SVi(ul,u2,u3,T,9\  ui(0) = u^  i =1,2,3 
dt (11)

V = V1F1* + V 2F2* + V ^ ,  Vj = Vij (u1,u2,u3), j  = 1,2,3
Gz -  Cru1

V, = A/i ( u1 -  u2 )(u1 -  u3)

12 u(u1 - u 2 )(u1 -  u3) ( )

V13 -------% --------7[(CA-1 - 1) ru2 - G zA -\ + r ]
u (  u1 -  u2 )(u1 -  u3 ) L J

Here, the functions V2j, V3j, j  = 1,2,3 are obtained from the corresponding expressions (12) for 

the same values of j  by cyclic permutation of the indices on the quantities ui . The functions F ' are 
obtained by substituting into the Fi from (9) the expressions (10). The initial values u° for variables 
ui are computed from the initial data Gz0, H 0, r0 with the aid of relations (5).

Into the right side of system (11) we substitute the fast variable 9 from expression (3) for the 
unperturbed motion.

The right hand sides of system (11) will be the periodic functions of t with period 2K (k) / a  , 
where k and a  are defined by relations (3). Averaging the right hand sides of the resultant system 
with respect to phase of the nutation angle 9 , we obtain, in the slow time t = s t , the averaged system 
of first approximation

du. / \ n—L = Ui (u1,u2,u 3, t ) , ui(0) = ui , i = 1,2,3
dT

a  2k/a (13)
Ui (u^ ̂ , u3,T)=  J Vi (u1 ,u2 , u3,T,9(t)) dt

2K (k) 0

After investigating and solving system (13) for ui , the original slow variables Gz, H , r are 
recovered from formulas (10). The slow variables ui and Gz, H , r are determined with an error of 
order s  .

3. Perturbed motion of a rigid body under linear dissipative torques
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We investigate the perturbed Lagrange motion with torques applied to the body from the 
surrounding medium. This is the case, for example, for a medium the viscous properties of which 
change due to changes in the density, temperature, and composition of the medium. We assume that 
the perturbed torques are linearly dissipative and have the form

Mj = -a (r)p , M 2 = -a(r)q , M 3 = -b (r)r, a(r), b(r) > 0, r = st (14)

Here a(r) and b(r) are positive integrable functions depending on the medium’s properties 
and the body’s shape.

Torques (14) satisfy the sufficient conditions (7) for the possibility of averaging with respect 
only the nutation angle 9 . System (6) can be written as follows

Gz = - s  [(a(r) p  sin^ + a(r)q cos^) sin9 + b(r)r cos9]

H  = -s |^a(r) (p 2 + q ) + b (r)r2 J (15)

r = -sC  ~lb(r)r

Having integrated the third equation in (15), we obtain ( r° is the arbitrary initial value of the 
axial rotation velocity)

t

r = r 0exp(-sC -  j  b(st)dt) (16)
0

Consider a case where a(r), b(r) have the form

a(r) = a0 + a1r, b(r) = b0 + b1r, a0, a1, b0, b1 -  const (17)

An averaged system (13) after several transformations, with reference to (14), have the form

A  -  A , , ^ - . V u , ) *a ( r ) [ A t P - -C ru ,){G ‘ - C " ’’ + <u‘ -  1)<2H - Cr2 - 2 ^ v>] +
+ b ( r ) r (Gz -  C ru1) (v -  u1)J

1 7  -  A„(u, -  - Xu, -  . , )  fa ( r ) [A" (Gz - C ''"'-)(G  - C ' V) + <U2 -  1)(2H - C ' ' ' -  2>,V)] + <J8)

+ b (r) r (Gz -  C ru2) (v -  u2)J

T h  = A p(u3 - 4 ,  - u1) ^ (Gz -CrU3)(Gz -CrV) + ^  -  1)(2H - Crl - 2^ V)J +
+ b (r) r (Gz -  C ru3) (v -  u3)J

Here v = u3- ( u 3 - u1)E (k ) /K (k ), K (k), E(k) are the complete elliptic integrals of the first and 
second kinds. The expressions (3), (10) are substituted in the place of Gz, H , r, k  .

The averaged system (18) was integrated numerically for t »  0 under various initial conditions 
and problem parameters. Let us present the calculation results for three cases corresponding to the 
following initial data:

a).0 = 0.913, u20 = 0.996, u30 = 1.087, 90 = 50 (19)
b) u0 = 0, .0 = 0.5, u, = 2, 90 = 600 (20)
c) u0 = -0.932, u20 = -0.866, u30 = 2.932, 90 = 1500 (21)

256



L.D. Akulenko, T.A. Kozachenko et al.

The data presented correspond to a spinning top receiving at the initial instant an angular 
rotation velocity equal to r° =y/3 around the dynamic symmetry axis and deviated from the vertical 
by the angle 9°. In addition, we take A = 1.5, C = 1, )i=  0.5, a0 = 0.125, b0 = 0.1, a1 = b1 = 1 . Using 
the values of ui found as a result of the numerical integration, we determine the variables from 
formulas (10). The graphs of functions, Gz, H , r, ui, i = 1,2,3are shown in Figs. 1-3 for the three 
cases mentioned.

The total energy H  decreases monotonically and asymptotically approaches the value 
H  = = -0.5 . The projection of the moment of momentum vector onto the vertical Gz in cases a 
and b decreases monotonically, while in case c it increases monotonically, tending to zero in all 
three cases. The quantities u1 and u2 decrease monotonically and tend to -1, while u3 asymptotically 
approaches +1. In this connection as follows from (3), we have cos9 ^  -1 (9 ^  x )  . Thus, under the
action of external dissipation the rigid body, for the initial condition, tends to the unique stable 
(lower) equilibrium position.

Figure 1. The graphs of functions Gz, H , r, ui, i = 1,2,3 for the case a).
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Figure 4. The graphs of functions u1, u2 with smaller scale.

The graphs of functions u1 and u2 in Fig. 3 are coincide. The graphs of functions ul , u2 in Fig.
4 with smaller scale at the ordinate axes show that the quantities u1 and u2 decrease. The correctness 
of the calculation was monitored by the fact that the values r as obtained from the numerical data and 
from formulas (10) practically coincided with the exact solution (17).

Conclusions

Comparison of obtained results with the results of [1, 2] shows that the perturbation torque 
slowly varying in time smooth out the variation of ui, i = 1,2,3, Gz, H  in the calculation results. The 
rigid body under the action of perturbation torque (14) tends to the stable equilibrium position more 
quickly than it was obtained in [1, 2].
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