2,467 research outputs found
Assessing fracture risk in early stage breast cancer patients treated with aromatase-inhibitors: An enhanced screening approach incorporating trabecular bone score
AbstractIntroductionAromatase-inhibitors (AIs) are commonly used for treatment of patients with hormone-receptor positive breast carcinoma, and are known to induce bone density loss and increase the risk of fractures. The current standard-of-care screening tool for fracture risk is bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). The fracture risk assessment tool (FRAX®) may be used in conjunction with BMD to identify additional osteopenic patients at risk of fracture who may benefit from a bone-modifying agent (BMA). The trabecular bone score (TBS), a novel method of measuring bone microarchitecture by DXA, has been shown to be an independent indicator of increased fracture risk. We report how the addition of TBS and FRAX®, respectively, to BMD contribute to identification of elevated fracture risk (EFR) in postmenopausal breast cancer patients treated with AIs.Methods100 patients with early stage hormone-positive breast cancer treated with AIs, no prior BMAs, and with serial DXAs were identified. BMD and TBS were measured from DXA images before and following initiation of AIs, and FRAX® scores were calculated from review of clinical records. EFR was defined as either: BMD ≤−2.5 or BMD between −2.5 and −1 plus either increased risk by FRAX® or degraded microstructure by TBS.ResultsAt baseline, BMD alone identified 4% of patients with EFR. The addition of FRAX® increased detection to 13%, whereas the combination of BMD, FRAX® and TBS identified 20% of patients with EFR. Following AIs, changes in TBS were independent of changes in BMD. On follow-up DXA, BMD alone detected an additional 1 patient at EFR (1%), whereas BMD+ FRAX® identified 3 additional patients (3%), and BMD+FRAX®+TBS identified 7 additional patients (7%).ConclusionsThe combination of FRAX®, TBS, and BMD maximized the identification of patients with EFR. TBS is a novel assessment that enhances the detection of patients who may benefit from BMAs
Elliptic and hyperelliptic magnetohydrodynamic equilibria
The present study is a continuation of a previous one on "hyperelliptic"
axisymmetric equilibria started in [Tasso and Throumoulopoulos, Phys. Plasmas
5, 2378 (1998)].
Specifically, some equilibria with incompressible flow nonaligned with the
magnetic field and restricted by appropriate side conditions like "isothermal"
magnetic surfaces, "isodynamicity" or P + B^2/2 constant on magnetic surfaces
are found to be reducible to elliptic integrals. The third class recovers
recent equilibria found in [Schief, Phys. Plasmas 10, 2677 (2003)]. In contrast
to field aligned flows, all solutions found here have nonzero toroidal magnetic
field on and elliptic surfaces near the magnetic axis.Comment: 9 page
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-Transiting Planet in the Kepler-20 System*
Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own Solar System. A transition from rocky to gaseous planets with a planetary transition radius of ∼ 1.6 R⊕ has recently been proposed by several publications in the literature (Rogers 2015; Weiss& Marcy 2014). Kepler-20b (Rp ∼ 1.9 R⊕) has a size beyond this transition radius, however previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of Kepler-20 three of the planets in the Kepler-20 system facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (M* = 0.948 ± 0.051 M☉ and R* = 0.964 ± 0.018 R☉).Kepler-20b is a 1.868+0.066 −0.034 R⊕ planet in a 3.7 day period with amass of 9.70+1.41 −1.44 M⊕ resulting in a mean density of 8.2 +1.5 −1.3 g cm−3 indicating a rocky composition with an iron to silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of 19.96+3.08 −3.61 M⊕ and an orbital period of ∼ 34 days in the gap between Kepler-20f (P ∼ 11 days) and Kepler-20d (P ∼78 days).PostprintPeer reviewe
Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies
BACKGROUND:
Genetic determinants of stroke, the leading neurological cause of death and disability, are poorly understood and have seldom been explored in the general population. Our aim was to identify additional loci for stroke by doing a meta-analysis of genome-wide association studies.
METHODS:
For the discovery sample, we did a genome-wide analysis of common genetic variants associated with incident stroke risk in 18 population-based cohorts comprising 84 961 participants, of whom 4348 had stroke. Stroke diagnosis was ascertained and validated by the study investigators. Mean age at stroke ranged from 45·8 years to 76·4 years, and data collection in the studies took place between 1948 and 2013. We did validation analyses for variants yielding a significant association (at p<5 × 10(-6)) with all-stroke, ischaemic stroke, cardioembolic ischaemic stroke, or non-cardioembolic ischaemic stroke in the largest available cross-sectional studies (70 804 participants, of whom 19 816 had stroke). Summary-level results of discovery and follow-up stages were combined using inverse-variance weighted fixed-effects meta-analysis, and in-silico lookups were done in stroke subtypes. For genome-wide significant findings (at p<5 × 10(-8)), we explored associations with additional cerebrovascular phenotypes and did functional experiments using conditional (inducible) deletion of the probable causal gene in mice. We also studied the expression of orthologs of this probable causal gene and its effects on cerebral vasculature in zebrafish mutants.
FINDINGS:
We replicated seven of eight known loci associated with risk for ischaemic stroke, and identified a novel locus at chromosome 6p25 (rs12204590, near FOXF2) associated with risk of all-stroke (odds ratio [OR] 1·08, 95% CI 1·05-1·12, p=1·48 × 10(-8); minor allele frequency 21%). The rs12204590 stroke risk allele was also associated with increased MRI-defined burden of white matter hyperintensity-a marker of cerebral small vessel disease-in stroke-free adults (n=21 079; p=0·0025). Consistently, young patients (aged 2-32 years) with segmental deletions of FOXF2 showed an extensive burden of white matter hyperintensity. Deletion of Foxf2 in adult mice resulted in cerebral infarction, reactive gliosis, and microhaemorrhage. The orthologs of FOXF2 in zebrafish (foxf2b and foxf2a) are expressed in brain pericytes and mutant foxf2b(-/-) cerebral vessels show decreased smooth muscle cell and pericyte coverage.
INTERPRETATION:
We identified common variants near FOXF2 that are associated with increased stroke susceptibility. Epidemiological and experimental data suggest that FOXF2 mediates this association, potentially via differentiation defects of cerebral vascular mural cells. Further expression studies in appropriate human tissues, and further functional experiments with long follow-up periods are needed to fully understand the underlying mechanisms
Previous fracture and subsequent fracture risk : a meta-analysis to update FRAX
A large international meta-analysis using primary data from 64 cohorts has quantified the increased risk of fracture associated with a previous history of fracture for future use in FRAX. The aim of this study was to quantify the fracture risk associated with a prior fracture on an international basis and to explore the relationship of this risk with age, sex, time since baseline and bone mineral density (BMD). We studied 665,971 men and 1,438,535 women from 64 cohorts in 32 countries followed for a total of 19.5 million person-years. The effect of a prior history of fracture on the risk of any clinical fracture, any osteoporotic fracture, major osteoporotic fracture, and hip fracture alone was examined using an extended Poisson model in each cohort. Covariates examined were age, sex, BMD, and duration of follow-up. The results of the different studies were merged by using the weighted β-coefficients. A previous fracture history, compared with individuals without a prior fracture, was associated with a significantly increased risk of any clinical fracture (hazard ratio, HR = 1.88; 95% CI = 1.72-2.07). The risk ratio was similar for the outcome of osteoporotic fracture (HR = 1.87; 95% CI = 1.69-2.07), major osteoporotic fracture (HR = 1.83; 95% CI = 1.63-2.06), or for hip fracture (HR = 1.82; 95% CI = 1.62-2.06). There was no significant difference in risk ratio between men and women. Subsequent fracture risk was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any clinical fracture (14%), osteoporotic fracture (17%), and for hip fracture (33%). The risk ratio for all fracture outcomes related to prior fracture decreased significantly with adjustment for age and time since baseline examination. A previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by BMD. The effect is similar in men and women. Its quantitation on an international basis permits the more accurate use of this risk factor in case finding strategies
A meta-analysis of previous falls and subsequent fracture risk in cohort studies
NC Harvey acknowledges funding from the UK Medical Research Council (MC_PC_21003; MC_PC_21001). The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, and 75N92021D00005. Funding for the MrOS USA study comes from the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. Funding for the SOF study comes from the National Institute on Aging (NIA), and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), supported by grants (AG05407, AR35582, AG05394, AR35584, and AR35583). Funding for the Health ABC study was from the Intramural research program at the National Institute on Aging under the following contract numbers: NO1-AG-6–2101, NO1-AG-6–2103, and NO1-AG-6–2106.Peer reviewedPostprin
A pair of Sub-Neptunes transiting the bright K-dwarf TOI-1064 characterised with CHEOPS
Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine Teff,⋆=4734±67K, R⋆=0.726±0.007R⊙, and M⋆=0.748±0.032M⊙. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of Mb=13.5+1.7−1.8 M⊕, whilst TOI-1064 c has an orbital period of Pc=12.22657+0.00005−0.00004 d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.Publisher PDFPeer reviewe
- …