197 research outputs found

    IMECE2002-34587 NUMERICAL AND EXPERIMENTAL STUDY OF IMPELLER DIFFUSER INTERACTION

    Get PDF
    ABSTRACT The unsteadiness of the flow at the leading edge of a vaned diffuser represents a source of low efficiency and instability in a centrifugal turbomachine. Furthermore, the internal flow of the impeller can be affected by asymmetric downstream conditions, which results in extra flow unsteadiness and instabilities. Numerical and experimental data are obtained. The simulation of impeller diffuser interaction is performed using CFXTascflow. A frozen rotor simulation is used for the steady calculation and a rotor-stator simulation is used for the unsteady calculation using the steady results as an initial guess. The unsteady simulation is done not only for one impeller and diffuser blades, but also for the whole impeller and diffuser blades using Unix workstation. For the experimental work, a transparent fan is design and tested at The Turbomachinery Laboratory of SJTU. The test rig consists of a centrifugal, shrouded impeller, diffuser and volute casing all made of plexiglass. A particle image velocimeter (PIV) is used to measure the 2-D instantaneous velocity in the interaction region between impeller, vaned. A series of performance measurements were carried out at different speeds. The first trial of measuring the instantaneous flow field in a part of the impeller and vaned diffuser together at different relative locations between them is presented in this work at different flow rates. Obtaining detailed measurements in the interaction region between the impeller and diffuser can help in understanding the complex flow phenomena and improving centrifugal fan and compressor performance. Finally, the comparison between the unsteady measurements and unsteady calculations showed that the Rotor/Stator Model can predict the basic characteristics of unsteady flow in centrifugal fan but still need improvement to satisfy the true transient simulation for unsteady impeller diffuser interaction INTRODUCTION The improvement of machine performances can only be achieved if there is a progress in the comprehension of the nature of the complex flow that develops at the gap between rotor and stator. During the design of a turbomachine, the flow is considered steady and uniform at the entry of each element. For a centrifugal fan with a vaned diffuser, satisfying this assumption requires a large interface between the rotor and the stator so that the mixing process of the flow leaving the impeller can take place. Otherwise, the unsteady flow that enters the diffuser represents a source of low efficiency. Furthermore, the internal flow of the impeller can be affected by asymmetric downstream conditions, which results in extra flow unsteadiness and instabilities. A number of authors have treated the problem of the interaction of the impeller and its surroundings. Inoue and Cumpsty [1], Sideris [2] and Arnd

    Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene

    Get PDF
    Catalytic steam reforming of waste high density polyethylene for the production of hydrogen/syngas has been investigated using different zeolite supported nickel catalysts in a two-stage pyrolysis-catalytic steam reforming reactor system. Experiments were conducted into the influence of the type of zeolite where Ni/ZSM5-30, Ni/β-zeolite-25 and the Ni/Y-zeolite-30 catalysts were compared in relation to hydrogen and syngas production. Results showed that the Ni/ZSM5-30 catalyst generated the maximum syngas production of 100.72 mmol g‾¹ plastic , followed by the Ni/β-zeolite-25 and Ni/Y-zeolite-30 catalyst. In addition, the ZSM-5 supported nickel catalyst showed excellent coke resistance and thermal stability. It was found that the Y type zeolite supported nickel catalyst possessed narrower pores than the other catalysts, which in turn, promoted coke deactivation of the catalyst. Large amounts of filamentous carbons were observed on the surface of the Ni/Y-zeolite-30 catalyst from scanning electron microscope images. In addition, the influence of Si:Al molar ratio for the Ni/ZSM-5 catalysts in relation to hydrogen and syngas yield was inv estigated. The results indicated that hydrogen production was less affected by the Si:Al ratio than the type of zeolite support. Also, the Ni/ZSM5-30 catalyst was further investigated to determine the influence of different process parameters on hydrogen and syngas yield via different reforming temperatures (650, 750, 850 °C) and steam feeding rate (0, 3, 6 g h‾¹). It was found that increasing both the temperature and steam feeding rate favoured hydrogen production from the pyrolysis-catalytic reforming of waste polyethylene. The optimum catalytic performance in terms of syngas production was achieved when the steam feeding rate was 6 g h‾¹ and catalyst temperature was 850 °C in the presence of Ni/ZSM5-30 catalyst, with production of 66.09 mmol H 2 g‾¹(plastic) and 34.63 mmol CO gg‾¹(plastic)

    Evaluation of the effect of pressure and heat transfer on the efficiency of a batch fuel reactor, using Iron-based Oxygen Carrier with a CFD model

    Get PDF
    19 figures, 4 tables.Coupling a Chemical Looping Combustor fed with biofuels with a turbo expander is a promising Negative Emissions Technology (NET) to realize climate neutral targets in China and Europe. This is also an example of Bioenergy with Carbon Capture and Storage (BECCS) technology. To realize it, we need a Pressurized Chemical Looping Combustion process (PCLC). In this work, a Eulerian-Lagrangian hybrid model is developed in Barracuda-VRTM software, incorporating chemical reactions to predict the performance of a Fuel Reactor using Fe2O3 as oxygen carrier and syngas as fuel, under different pressures, ranging from 1 bar to 20 bars. The model predicted the conversion efficiency of syngas reduction using an iron-based oxygen carrier (Fe2O3/Al2O3). The results show, that the increase in pressure promotes the conversion of CO and inhibits the conversion of H2. When the two gases are considered together, the increase in pressure promotes the reaction between syngas and Fe2O3 and reduces the demand for Fe2O3 oxygen carrier per unit of syngas Lower Heating Value and so also the inventory of the reactor. Increasing temperatures promotes both the reaction of H2 and CO with Fe2O3. Dealing with CO conversion, this is more affected by pressure changes and temperature changes than H2. This represents important information for Fuel Reactor design, scale up and optimization. Further validation is neded in batch and continuous pressurised plants.This work has been funded by the GTCLC-NEG project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101018756.Peer reviewe

    Peripheral Blood Lymphocyte Subsets Predict the Efficacy of Immune Checkpoint Inhibitors in Non–Small Cell Lung Cancer

    Get PDF
    BackgroundNon–small cell lung cancer (NSCLC) has entered the era of immunotherapy. However, only partial patients were able to benefit from immune checkpoint inhibitors (ICIs). Currently, biomarkers for predicting patients’ response to ICIs are primarily tumor tissue dependent and have limited accuracy. There is an urgent need to explore peripheral blood-based biomarkers to predict the efficacy and safety of ICI therapy.MethodsTo explore the correlation between lymphocyte subsets and the efficacy and safety of ICIs, we retrospectively analyzed peripheral blood lymphocyte subsets and survival prognosis data of 136 patients with stage IV NSCLC treated with ICIs.ResultsThe two factors that had the greatest impact on the prognosis of patients with NSCLC treated with ICIs were CD4+CD45RA− T cell (HR = 0.644, P = 0.047) and CD8+ T/lymphocyte (%) (HR = 1.806, P = 0.015). CD4+CD45RA− T cell showed excellent predictive efficacy (AUC = 0.854) for ICIs monotherapy, with a sensitivity of 75.0% and specificity of 91.7% using CD4+CD45RA− T cell >311.3 × 106/L as the threshold. In contrast, CD8+ T/lymphocyte (%) was only associated with the prognosis but had no predictive role for ICI efficacy. CD4+ T cell and its subsets were significantly higher in patients with mild (grades 1–2) immune-related adverse events (irAEs) than those without irAEs. CD8+CD38+ T cell was associated with total irAEs and severe (grades 3–4) irAEs but was not suitable to be a predictive biomarker.ConclusionPeripheral blood CD4+CD45RA− T cell was associated with the prognosis of patients with NSCLC applying ICIs, whereas CD8+CD38+ T cell was associated with irAEs and severe irAEs
    • …
    corecore