92 research outputs found

    Assessing the opportunities of landfill mining as a source of critical raw materials in Europe

    Get PDF
    Many of the metals in landfill constitute valuable and scarce natural resources. It has already been recognised that the recovery of these elements is critical for the sustainability of a number of industries. Arsenic (which is an essential part of the production of transistors and LEDs) is predicted to run out sometime in the next five to 50 years if consumption continues at the present rate. Nickel used for anything involving stainless steel and platinum group metals (PGMs) used in catalytic converters, fertilisers and others are also identified as critical materials (CM) to the EU economy at risk of depletion However, despite the increasing demand, none of this supply is supported by recycling. This is due to the high cost of recovery from low concentrations when compared to conventional mining. As demonstrated by the two pilot case studies of this study, mining landfill sites only for their metals content is not expected to be financially viable. However, other opportunities such as Waste-derived fuels from excavated materials exist which if combined , form the concept of ‘enhanced landfill mining’. have the potential to be highly energetic. The energy potential is comparable to the levels of energy of Refuse-Derived Fuels (RDF) produced from non-landfilled wastes

    A bone grease processing station at the Mitchell Prehistoric Indian Village: archaeological evidence for the exploitation of bone fats

    Get PDF
    © Association for Environmental Archaeology 2015. Author's accepted manuscript version deposited in accordance with SHERPA RoMEO guidelines. The definitive version is available at http://www.maneyonline.com/doi/abs/10.1179/1749631414Y.0000000035.Recent excavations at the Mitchell Prehistoric Indian Village, an Initial Middle Missouri site in Mitchell, South Dakota have revealed a large, clay-lined feature filled with fractured and fragmented bison bones. Fracture and fragmentation analysis, along with taphonomic evidence, suggests that the bones preserved within the feature represent evidence of prehistoric bone marrow and bone grease exploitation. Further, the character of the feature suggests that it served as a bone grease processing station. Bone fat exploitation is an activity that is frequently cited as a causal explanation for the nature of many fractured and fragmented bone assemblages in prehistory, and zooarchaeological assemblages have frequently been studied as evidence of bone fat exploitation. The Mitchell example provides some of the first direct, in-situ archaeological evidence of a bone grease processing feature, and this interpretation is sustained by substantial analytical evidence suggesting bone fat exploitation. This new evidence provides a clearer concept of the nature of bone fat exploitation in prehistory as well as an indication of the scale and degree to which bone grease exploitation occurred at the Mitchell site. Finally, this research demonstrates the importance of careful zooarchaeological and taphonomic analysis for the interpretation of both artifactual remains as well as archaeological features

    RNAi screen for NRF2 inducers identifies targets that rescue primary lung epithelial cells from cigarette smoke induced radical stress

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE) induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the 'druggable' genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism

    Grasp preparation modulates early visual processing of size and detection of local/global stimulus features

    Get PDF
    Preparing to grasp objects facilitates visual processing of object location, orientation and size, compared to preparing actions such as pointing. This influence of action on perception reflects mechanisms of selection in visual perception tuned to current action goals, such that action relevant sensory information is prioritized relative to less relevant information. In three experiments, rather than varying movement type (grasp vs. point), the magnitude of a prepared movement (power vs. precision grasps) was manipulated while visual processing of object size, as well as local/global target detection was measured. Early event-related potentials elicited by task-irrelevant visual probes were enhanced for larger probes during power grasp preparation and smaller probes during precision grasp preparation. Local targets were detected faster following precision, relative to power grasp cues. The results demonstrate a direct influence of grasp preparation on sensory processing of size and suggest that the hierarchical dimension of objects may be a relevant perceptual feature for grasp programming. To our knowledge, this is the first evidence that preparing different magnitudes of the same basic action has systematic effects on visual processing

    Unravelling the behavioural evidence for temporal binding

    Get PDF
    If two images are displayed in rapid cyclical order, we perceive them as a single, fused image. However, recent studies have revealed that visual ordering and grouping can be influenced by minor temporal offsets of this sort, and it has been suggested that this effect reveals the presence of a neural 'temporal binding mechanism'. This mechanism would serve to keep multiple mental representations of one object distinct from those of other objects. An alternative explanation is that involuntary eye movements are responsible for converting the temporal offset of the two images into a minor spatial offset in the compound, test image. To test this hypothesis, I replicated one of the recent studies over several viewing distances, and discovered a significant increase in performance as viewing distance increased (p < 0.01). Further studies with an eye tracker confirmed the link between eye-movement amplitude and sensitivity to the temporal offset. Hence, the work reveals a role for involuntary, fixational eye movements in the perception of temporally asynchronous stimuli. As a result, our sensitivity to very brief temporal asynchrony is open to re-interpretation in terms of a purely spatial mechanism, thereby undermining support for the temporal-binding hypothesis
    • …
    corecore