25 research outputs found

    Sucar Coating the Envelope : Glycoconjucates for Microbe-Host Crosstalk

    Get PDF
    Tremendous progress has been made on mapping the mainly bacterial members of the human intestinal microbiota. Knowledge on what is out there, or rather what is inside, needs to be complemented with insight on how these bacteria interact with their biotic environment. Bacterial glycoconjugates, that is, the collection of all glycan-modified molecules, are ideal modulators of such interactions. Their enormous versatility and diversity results in a species-specific glycan barcode, providing a range of ligands for host interaction. Recent reports on the functional importance of glycosylation of important bacterial ligands in beneficial and pathogenic species underpin this. Glycoconjugates, and glycoproteins in particular, are an underappreciated, potentially crucial, factor in understanding bacteria-host interactions of old friends and foes.Peer reviewe

    Characterization of Highly Mucus-Adherent Non-GMO Derivatives of Lacticaseibacillus rhamnosus GG

    Get PDF
    Lacticaseibacillus rhamnosusGG is one of the best studied lactic acid bacteria in the context of probiotic effects.L. rhamnosusGG has been shown to prevent diarrhea in children and adults and has been implicated to have mitigating or preventive effects in several disorders connected to microbiota dysbiosis. The probiotic effects are largely attributed to its adhesive heterotrimeric sortase-dependent pili, encoded by thespaCBA-srtC1gene cluster. Indeed, the strain-specific SpaCBA pili have been shown to contribute to adherence, biofilm formation and host signaling. In this work we set out to generate non-GMO derivatives ofL. rhamnosusGG that adhere stronger to mucus compared to the wild-type strain using chemical mutagenesis. We selected 13 derivatives that showed an increased mucus-adherent phenotype. Deep shotgun resequencing of the strains enabled division of the strains into three classes, two of which revealed SNPs (single nucleotide polymorphisms) in thespaAandspaCgenes encoding the shaft and tip adhesive pilins, respectively. Strikingly, the other class derivatives demonstrated less clear genotype - phenotype relationships, illustrating that pili biogenesis and structure is also affected by other processes. Further characterization of the different classes of derivatives was performed by PacBio SMRT sequencing and RNAseq analysis, which resulted in the identification of molecular candidates driving pilin biosynthesis and functionality. In conclusion, we report on the generation and characterization of three classes of strongly adherentL. rhamnosusGG derivatives that show an increase in adhesion to mucus. These are of special interest as they provide a window on processes and genes driving piliation and its control inL. rhamnosusGG and offer a variety of non-GMO derivatives of this key probiotic strain that are applicable in food products.Peer reviewe

    Complete genome sequence of Enterococcus faecium commensal isolate E1002.

    Get PDF
    The emergence of vancomycin-resistant enterococci (VRE) has been associated with an increase in multidrug-resistant nosocomial infections. Here, we report the 2.614-Mb genome sequence of the Enterococcus faecium commensal isolate E1002, which will be instrumental in further understanding the determinants of the commensal and pathogenic lifestyle of E. faecium.Peer reviewe

    Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation

    Get PDF
    Akkermansia muciniphila is a champion of mucin degradation in the human gastrointestinal tract. Here, we report the isolation of six novel strains from healthy human donors and their genomic, proteomic and physiological characterization in comparison to the type-strains A. muciniphila Muc(T) and A. glycaniphila Pyt(T). Complete genome sequencing revealed that, despite their large genomic similarity (>97.6%), the novel isolates clustered into two distinct subspecies of A. muciniphila: Amuc1, which includes the type-strain Muc(T), and AmucU, a cluster of unassigned strains that have not yet been well characterized. CRISPR analysis showed all strains to be unique and confirmed that single healthy subjects can carry more than one A. muciniphila strain. Mucin degradation pathways were strongly conserved amongst all isolates, illustrating the exemplary niche adaptation of A. muciniphila to the mucin interface. This was confirmed by analysis of the predicted glycoside hydrolase profiles and supported by comparing the proteomes of A. muciniphila strain H2, belonging to the AmucU cluster, to Muc(T) and A. glycaniphila Pyt(T) (including 610 and 727 proteins, respectively). While some intrinsic resistance was observed among the A. muciniphila straind, none of these seem to pose strain-specific risks in terms of their antibiotic resistance patterns nor a significant risk for the horizontal transfer of antibiotic resistance determinants, opening the way to apply the type-strain Muc(T) or these new A. muciniphila strains as next generation beneficial microbes.Peer reviewe

    Lactobacillus rhamnosus GG Outcompetes Enterococcus faecium via Mucus-Binding Pili : Evidence for a Novel and Heterospecific Probiotic Mechanism

    Get PDF
    Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections.Peer reviewe

    Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly

    Get PDF
    Background Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. Results We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. Conclusions We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.Peer reviewe

    Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili

    Get PDF
    Mapping of the microbial molecules underlying microbiota-host interactions is key to understand how microbiota preserve mucosal homeostasis. A pivotal family of such bacterial molecules are pili. Pili are proteinaceous cell wall appendages with a well-documented role in adhesion, whilst their role in immune interaction with the host is less established. Gram-positive pili are often posttranslationally modified by sortase-specific cleavage reactions and the formation of intramolecular peptide bonds. Here we report glycosylation as a new level of posttranslational modification of sortase-dependent pili of a beneficial microbiota species and its role in immune modulation. We focused on the SpaCBA pili of the model probiotic and beneficial human gut microbiota isolate Lactobacillus rhamnosus GG. A unique combination of molecular techniques, nanoscale mechanical and immunological approaches led to the identification of mannose and fucose residues on the SpaCBA pili. These glycans on the pili are recognized by human dendritic cells via the C-type lectin receptor DC-SIGN, a key carbohydrate-dependent immune tailoring pattern recognition receptor. This specific lectin-sugar interaction is moreover of functional importance and modulated the cytokine response of dendritic cells. This provides insight into the direct role bacterial glycoproteins can play in the immunomodulation of the host. Modification of the complex heterotrimeric pili of a model probiotic and microbiota isolate with mannose and fucose is of importance for the functional interaction with the host immune lectin receptor DC-SIGN on human dendritic cells. Our findings shed light on the yet underappreciated role of glycoconjugates in bacteria-host interactions.Peer reviewe

    Bowel Biofilms : Tipping Points between a Healthy and Compromised Gut?

    Get PDF
    Bacterial communities are known to impact human health and disease. Mixed species biofilms, mostly pathogenic in nature, have been observed in dental and gastric infections as well as in intestinal diseases, chronic gut wounds and colon cancer. Apart from the appendix, the presence of thick polymicrobial biofilms in the healthy gut mucosa is still debated. Polymicrobial biofilms containing potential pathogens appear to be an early-warning signal of developing disease and can be regarded as a tipping point between a healthy and a diseased state of the gut mucosa. Key biofilm-forming pathogens and associated molecules hold promise as biomarkers. Criteria to distinguish microcolonies from biofilms are crucial to provide clarity when reporting biofilm-related phenomena in health and disease in the gut.Peer reviewe

    Selection and characterization of a SpaCBA pilus-secreting food-grade derivative of Lacticaseibacillus rhamnosus GG

    Get PDF
    Many studies have established the functional properties of Lacticaseibacillus rhamnosus GG, previously known as Lactobacillus rhamnosus GG, marketed worldwide as a probiotic. The extraordinary capacity of L. rhamnosus GG to bind to human mucus and influence the immune system especially stand out. Earlier, we have shown the key role of its SpaCBA sortase-dependent pili encoded by the spaCBA-srtC1 gene cluster herein. These heterotrimeric pili consist of a shaft pilin SpaA, a basal pilin SpaB, and tip pilin SpaC that contains a mucus-binding domain. Here, we set out to characterize a food-grade non-GMO mutant of L. rhamnosus GG, strain PA11, which secretes its pilins, rather than coupling them to the cell surface, due to a defect in the housekeeping sortase A. The sortase-negative strain PA11 was extensively characterized using functional genomics and biochemical approaches and found to secrete the SpaCBA pili into the supernatant. Given the functional importance and uniqueness of the mucus-binding pili of L. rhamnosus GG, strain PA11 offers novel opportunities towards the characterization and further therapeutic application of SpaCBA pili and their low-cost, large-scale production.Peer reviewe
    corecore