836 research outputs found

    Utilization of Soft-rot Cavity Orientation for the Determination of Microfibril Angle. Part I

    Get PDF
    These studies utilize the decay cavities formed by the soft-rot fungus, Phialocephala dimorphospora, to determine the orientation of the cellulose fibrils in the cell wall. In this study, the microfibril angle was determined utilizing three methods: X-ray diffraction (T method), iodine staining, and orientation of the soft-rot cavities. The results demonstrate good agreement between the three techniques and verify that the decay cavities are formed in a direction parallel to the cellulose microfibrils and therefore can be used to determine the orientation of the cellulose microfibrils. One advantage of the soft-rot method over the X-ray method is the ability to measure angles of any size, including those of juvenile wood

    Variation of Microfibril Angle Within Individual Tracheids

    Get PDF
    Utilizing the orientation of soft-rot cavities, microfibril angles were measured in individual tracheids (pulped fibers) and thin sections of southern pine in order to determine the extent of variation. Within individual tracheids of southern pine, microfibril angles were consistent along the length of a tracheid and when measured between bordered pits. Microfibril angles were highly variable on the radial walls containing bordered pits. Microfibril angles approached 90° around bordered pits, but the angles on the walls opposite the bordered pits were consistent with the average angle along the length of the tracheid. Variation (standard deviation) was less in latewood tracheids than in earlywood tracheids. Within individual tracheids, there was no correlation between microfibril angle and tracheid width. Across an annual ring of southern pine, microfibril angle gradually decreased through the earlywood and became much smaller in the latewood

    Bio-Fabrication of Human Amniotic Membrane Zinc Oxide Nanoparticles and the Wet/Dry HAM Dressing Membrane for Wound Healing

    Get PDF
    Publication history: Accepted - 25 June 2021; Published online - 28 July 2021.The preparation of unique wet and dry wound dressing products derived from unprocessed human amniotic membrane (UP-HAM) is described. The UP-HAM was decellularized, and the constituent proteins were cross-linked and stabilized before being trimmed and packed in sterile Nucril-coated laminated aluminium foil pouches with isopropyl alcohol to manufacture processed wet human amniotic membrane (PWHAM). The dry type of PD-HAM was prepared by decellularizing the membrane, UV irradiating it, lyophilizing/freeze-drying it, sterilizing it, and storing it at room temperature. The UP-HAM consists of a translucent yellowish mass of flexible membranes with an average thickness of 42 ”m. PW-HAM wound dressings that had been processed, decellularized, and dehydrated had a thinner average thickness of 30 ”m and lacked nuclear-cellular structures. Following successful decellularization, discrete bundle of fibrous components in the stromal spongy layers, microvilli and reticular ridges were still evident on the surface of the processed HAM, possibly representing the location of the cells that had been removed by the decellularization process. Both wet and dry HAM wound dressings are durable, portable, have a shelf life of 3–5 years, and are available all year. A slice of HAM dressing costs 1.0 US/cm2 . Automation and large-scale HAM membrane preparation, as well as storage and transportation of the dressings, can all help to establish advanced technologies, improve the efficiency of membrane production, and reduce costs. Successful treatment of wounds to the cornea of the eye was achieved with the application of the HAM wound dressings. The HAM protein analysis revealed 360 ”g proteins per gram of tissue, divided into three main fractions with MWs of 100 kDa, 70 kDa, and 14 kDa, as well as seven minor proteins, with the 14 kDa protein displaying antibacterial properties against human pathogenic bacteria. Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 July 2021 | Volume 9 | Article 695710 fbioe-09-695710 July 22, 2021 Time: 16:39 # 2 Ramasamy et al. HAMP-ZnO Nanoparticles HAM Wound Dressing Wet and dry wound dressings were produced. HAM proteins were purified and analysed. The zinc oxide nanoparticles (HAMP-ZnO NP) made from HAM proteins were characterised and tested for their antibacterial activity. Wounds to the cornea of the eye healed easily when treated with HAM wound dressings. Fresh human Amniotic membrane, Serological screening, selection of disease-free HAM, reome stromal layer, preparation of HAM. UNPROCESSED HAM Cuboidal epithelial cells, basement membrane, compact layer, stromal and spongy layers containing scatted fibroblast cells are visible in hsitological analysis. The flow chart depicts the methods for processing, and preparation of wet (PWHAM) and dry (PD-HAM) wound healing dressings. HAM proteins, Nanoparticle synthesis (HAMP-ZnO NP) and analysis. Antibacterial analysis show Inhibition of growth and biofilm formation of pathogenic bacteria . Processed HAM lacked a nuclear-cellular epithelium, but it did have a distinct fibrous elements in basement membrane, stromal and spongy layers. Processed PW-HAM (Light &SEM) showed smooth epithelial surface topography with microvilli,. HAM dressing, wet/dry, packed, labelled, sterilised and processed. They are durable, portable, have long shelf life . A slice of HAM dressing costs US 1.0 / cmÂČ . The wound dressings are ready to be applied. The dermal wounds and conjunctival surface can be successfully repaired using processed HAM wound dressings GRAPHICAL ABSTRACT | Flow chart depicting the methods, preparing, and characterizing, by histological, and scanning electron microscopy, of wet (PW-HAM) and dry (PD-HAM)of wound healing dressing, and preparation of nanoparticles (HAMP ZnO NP); and application of HAM wound dressing. A wide range of antibacterial activity was observed after treatment with 75 ”g/ml zinc oxide nanoparticles derived from human amniotic membrane proteins (HAMP-ZnO NP), including dose-dependent biofilm inhibition and inhibition of Gram-positive (S. aureus, S. mutans, E. faecalis, and L. fusiformis) and Gram-negative bacteria (S. sonnei, P. aeruginosa, P. vulgaris, and C. freundii).PR has acknowledged Sree Balaji Medical College and Hospital for providing the article processing charges of the journal, and moral and technical support. The support of Cologenesis Health Care Pvt. Ltd. for a study on “Human amniotic membrane for ocular and dermal applications” is sincerely appreciated

    Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases

    Get PDF
    Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.Peer reviewe

    Mission Operations and Navigation Toolkit Environment

    Get PDF
    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services

    Chemoradiation for advanced hypopharyngeal carcinoma: a retrospective study on efficacy, morbidity and quality of life

    Get PDF
    Chemoradiation (CRT) is a valuable treatment option for advanced hypopharyngeal squamous cell cancer (HSCC). However, long-term toxicity and quality of life (QOL) is scarcely reported. Therefore, efficacy, acute and long-term toxic effects, and long-term QOL of CRT for advanced HSCC were evaluated,using retrospective study and post-treatment quality of life questionnaires. in a tertiary hospital setting. Analysis was performed of 73 patients that had been treated with CRT. Toxicity was rated using the CTCAE score list. QOL questionnaires EORTC QLQ-C30, QLQ-H&N35, and VHI were analyzed. The most common acute toxic effects were dysphagia and mucositis. Dysphagia and xerostomia remained problematic during long-term follow-up. After 3 years, the disease-specific survival was 41%, local disease control was 71%, and regional disease control was 97%. The results indicated that CRT for advanced HSCC is associated with high locoregional control and disease-specific survival. However, significant acute and long-term toxic effects occur, and organ preservation appears not necessarily equivalent to preservation of function and better QOL

    Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages

    Get PDF
    Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.Peer reviewe
    • 

    corecore