205 research outputs found

    Emergency Triage Assessment and Treatment Plus (ETAT+): adapting training to strengthen quality improvement and task-sharing in emergency paediatric care in Sierra Leone

    Get PDF
    BACKGROUND: Over the past 25 years Sierra Leone has made progress in reducing maternal and child mortality, but the burden of preventable paediatric deaths remains high. Further progress towards achieving the Sustainable Development Goals will require greater strengthening of the health care system, including hospital care for perinatal and paediatric conditions. Emergency Triage Assessment and Treatment Plus (ETAT+) may offer a useful tool. METHODS: The five-day ETAT+ course was adapted as a six-month programme of in-situ training and mentoring integrated with patient flow and service delivery improvements in 14 regional and district government hospitals across the country. Nurses were trained to carry out the initial resuscitation and assessment of the sick paediatric patient, and to administer the first dose of medication per protocol. The course was for all clinical staff; most participants were nurses. RESULTS: The intervention was associated with an improvement in the quality of paediatric care and a reduction in mortality. In 2017 mortality decreased by 33.1%, from 14.5% at baseline to 9.7% after six months of the intervention. Mortality at the start of the 2018 intervention was 8.5% and reduced over six months to 6.5%. Care quality indicators showed improvement across the two intervention periods, with some evidence of sustained effect. CONCLUSIONS: These results suggest that adapted ETAT+ training with in-situ mentoring alongside improved patient flow and service delivery supports improvements in the quality of paediatric care in Sierra Leonean hospitals. ETAT+ may provide an affordable framework for improving the quality of secondary paediatric care in Sierra Leone and a model of nurse-led resuscitation may allow for prompt and timely emergency paediatric care in Sierra Leonean hospitals where there are fewer physicians and other resources for care

    Rituximab versus tocilizumab and B-cell status in TNF-alpha inadequate-responder rheumatoid arthritis patients: the R4-RA RCT

    Get PDF
    BackgroundAlthough biological therapies have transformed the outlook for those with rheumatoid arthritis, there is a lack of any meaningful response in approximately 40% of patients. The role of B cells in rheumatoid arthritis pathogenesis is well recognised and is supported by the clinical efficacy of the B-cell-depleting agent rituximab (MabThera, F. Hoffman La-Roche Ltd, Basel, Switzerland). Rituximab is licensed for use in rheumatoid arthritis following failure of conventional synthetic disease-modifying antirheumatic drugs and tumour necrosis factor inhibitor therapy. However, over 50% of patients show low/absent synovial B-cell infiltration, suggesting that, in these patients, inflammation is driven by alternative cell types. This prompted us to test the hypothesis that, in synovial biopsy B-cell-poor patients, tocilizumab (RoActemra, F. Hoffman La-Roche Ltd, Basel, Switzerland) (targeting interleukin 6) is superior to rituximab (targeting CD20+/B cells).DesignThe R4–RA (A Randomised, open-labelled study in anti-TNFalpha inadequate responders to investigate the mechanisms for Response, Resistance to Rituximab versus Tocilizumab in Rheumatoid Arthritis patients) trial is a 48-week Phase IV, open-label, randomised controlled trial conducted in 19 European centres that recruited patients failing on or intolerant to conventional synthetic disease-modifying antirheumatic drug therapy and at least one tumour necrosis factor inhibitor.ParticipantsSynovial tissue was obtained at trial entry and classified histologically as B-cell rich or B-cell poor to inform balanced stratification. Patients were randomised on a 1 : 1 basis to receive standard therapy with rituximab or tocilizumab. B-cell-poor/-rich molecular classification was also carried out. The study was powered to test the superiority of tocilizumab over rituximab at 16 weeks in the B-cell-poor population.Main outcome measuresThe primary end point was defined as an improvement in the Clinical Disease Activity Index (CDAI) score of ≥ 50% from baseline. In addition, patients were considered to be non-responders if they did not reach an improvement in CDAI score of ≥ 50% and a CDAI score of ResultsIn total, 164 patients were randomised: 83 patients received rituximab and 81 received tocilizumab. Eighty-one out of 83 rituximab patients and 73 out of 81 tocilizumab patients completed treatment up to week 16 (primary end point). Baseline characteristics were comparable between the treatment groups. In the histologically classified B-cell-poor population (n = 79), no significant difference was observed in the primary outcome, an improvement in CDAI score of ≥ 50% from baseline (risk ratio 1.25, 95% confidence interval 0.80 to 1.96). A supplementary analysis of the CDAI-MTR, however, did reach statistical significance (risk ratio 1.96, 95% confidence interval 1.01 to 3.78). In addition, when B-cell-poor classification was determined molecularly, both the primary end point and the CDAI-MTR were statistically significant (risk ratio 1.72, 95% confidence interval 1.02 to 2.91, and risk ratio 4.12, 95% confidence interval 1.55 to 11.01, respectively). Moreover, a larger number of secondary end points achieved significance when classified molecularly than when classified histologically. In the B-cell-rich population, there was no significant difference between treatments in the majority of both primary and secondary end points. There were more adverse events and serious adverse events, such as infections, in the tocilizumab group than in the rituximab group.ConclusionTo our knowledge, this is the first biopsy-based, multicentre, randomised controlled trial of rheumatoid arthritis. We were unable to demonstrate that tocilizumab was more effective than rituximab in patients with a B-cell-poor pathotype in our primary analysis. However, superiority was shown in most of the supplementary and secondary analyses using a molecular classification. These analyses overcame possible unavoidable weaknesses in our original study plan, in which the histological method of determining B-cell status may have misclassified some participants and our chosen primary outcome was insufficiently sensitive. Given the significant results observed using the molecular classification, future research will focus on refining this stratification method and evaluating its clinical utility.Trial registrationCurrent Controlled Trials ISRCTN97443826.FundingThis project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a Medical Research Council and National Institute for Health and Care Research (NIHR) partnership. This will be published in full in Efficacy and Mechanism Evaluation; Vol. 9, No. 7. See the NIHR Journals Library website for further project information

    Aluminium foil as an alternative substrate for the spectroscopic interrogation of endometrial cancer

    Get PDF
    Biospectroscopy has the potential to investigate and characterise biological samples and could, therefore, be utilised to diagnose various diseases in a clinical environment. An important consideration in spectrochemical studies is the cost-effectiveness of the substrate used to support the sample, as high expense would limit their translation into clinic. In this paper, the performance of low-cost aluminium (Al) foil substrates was compared with the commonly used low-emissivity (low-E) slides. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to analyse blood plasma and serum samples from women with endometrial cancer and healthy controls. The two populations were differentiated using principal component analysis with support vector machines (PCA-SVM) with 100% sensitivity in plasma samples (endometrial cancer=70; healthy controls=15) using both Al foil and low-E slides as substrates. The same sensitivity results (100%) were achieved for serum samples (endometrial cancer=60; healthy controls=15). Specificity was found higher using Al foil (90%) in comparison to low-E slides (85%) and lower using Al foil (70%) in comparison to low-E slides in serum samples. The establishment of Al foil as low-cost and highly-performing substrate would pave the way for large-scale, multi-centre studies and potentially for routine clinical use

    Raman scattering in C_{60} and C_{48}N_{12} aza-fullerene: First-principles study

    Full text link
    We carry out large scale {\sl ab initio} calculations of Raman scattering activities and Raman-active frequencies (RAFs) in C48N12{\rm C}_{48}{\rm N}_{12} aza-fullerene. The results are compared with those of C60{\rm C}_{60}. Twenty-nine non-degenerate polarized and 29 doubly-degenerate unpolarized RAFs are predicted for C48N12{\rm C}_{48}{\rm N}_{12}. The RAF of the strongest Raman signal in the low- and high-frequency regions and the lowest and highest RAFs for C48N12{\rm C}_{48}{\rm N}_{12} are almost the same as those of C60{\rm C}_{60}. The study of C60{\rm C}_{60} reveals the importance of electron correlations and the choice of basis sets in the {\sl ab initio} calculations. Our best calculated results for C60{\rm C}_{60} with the B3LYP hybrid density functional theory are in excellent agreement with experiment and demonstrate the desirable efficiency and accuracy of this theory for obtaining quantitative information on the vibrational properties of these molecules.Comment: submitted to Phys.Rev.

    Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein

    Get PDF
    Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3′ oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3′ UUUOH trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3′ UUUOH trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3′ oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation

    Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy

    Get PDF
    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection - Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100% for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0% sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked. © 2016, The Author(s)

    PfAlbas constitute a new eukaryotic DNA/RNA-binding protein family in malaria parasites

    Get PDF
    In Plasmodium falciparum, perinuclear subtelomeric chromatin conveys monoallelic expression of virulence genes. However, proteins that directly bind to chromosome ends are poorly described. Here we identify a novel DNA/RNA-binding protein family that bears homology to the archaeal protein Alba (Acetylation lowers binding affinity). We isolated three of the four PfAlba paralogs as part of a molecular complex that is associated with the P. falciparum-specific TARE6 (Telomere-Associated Repetitive Elements 6) subtelomeric region and showed in electromobility shift assays (EMSAs) that the PfAlbas bind to TARE6 repeats. In early blood stages, the PfAlba proteins were enriched at the nuclear periphery and partially co-localized with PfSir2, a TARE6-associated histone deacetylase linked to the process of antigenic variation. The nuclear location changed at the onset of parasite proliferation (trophozoite-schizont), where the PfAlba proteins were also detectable in the cytoplasm in a punctate pattern. Using single-stranded RNA (ssRNA) probes in EMSAs, we found that PfAlbas bind to ssRNA, albeit with different binding preferences. We demonstrate for the first time in eukaryotes that Alba-like proteins bind to both DNA and RNA and that their intracellular location is developmentally regulated. Discovery of the PfAlbas may provide a link between the previously described subtelomeric non-coding RNA and the regulation of antigenic variation

    RNA binding properties of conserved protein subunits of human RNase P

    Get PDF
    Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme
    corecore