8 research outputs found

    A Sensitive Micro Conductometric Ethanol Sensor Based on an Alcohol Dehydrogenase-Gold Nanoparticle Chitosan Composite

    Get PDF
    In this paper, a microconductometric sensor has been designed, based on a chitosan composite including alcohol dehydrogenase—and its cofactor—and gold nanoparticles, and was calibrated by differential measurements in the headspace of aqueous solutions of ethanol. The role of gold nanoparticles (GNPs) was crucial in improving the analytical performance of the ethanol sensor in terms of response time, sensitivity, selectivity, and reproducibility. The response time was reduced to 10 s, compared to 21 s without GNPs. The sensitivity was 416 µS/cm (v/v%)−1 which is 11.3 times higher than without GNPs. The selectivity factor versus methanol was 8.3, three times higher than without GNPs. The relative standard deviation (RSD) obtained with the same sensor was 2%, whereas it was found to be 12% without GNPs. When the air from the operator’s mouth was analyzed just after rinsing with an antiseptic mouthwash, the ethanol content was very high (3.5 v/v%). The background level was reached only after rinsing with water

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Cellular response associated to lesions induced by ecteinascidins, a unique class of anticancer drugs

    No full text
    Les ectéinascidines (la trabectédine, la lurbinectédine) sont de nouveaux dérivés de produits naturels marins qui se lient de façon covalente à l'ADN, actifs contre les cancers chimio-résistants. L'objectif de ma thèse est 1) d'identifier les principales voies de transduction activées en réponse à l'apparition des lésions de l'ADN induites par les ETs 2) d'établir si l'abrogation pharmacologique de la réponse cellulaire induite par l'endommagement de l'ADN (ATM, ATR, Chk1, Chk2) peut moduler l'activité thérapeutique des ETs. Dans un premier temps, nous avons montré que la voie ATR/Chk1 activée principalement en réponse à l'apparition d'un stress réplicatif et la voie ATM/Chk2 qui initie la réponse cellulaire suite à la formation de lésions double-brins, sont activées en réponse aux adduits créés par les ETs. Dans un second temps, nous avons montré que les combinaisons des ETs avec les inhibiteurs Chk1/Chk2 ou les inhibiteurs ATR ou ATM seuls s'accompagnent d'une modeste potentialisation. Inversement, la combinaison simultanée des ETs avec les inhibiteurs ATR et ATM entraine une forte synergie dans les modèles du cancer de l'utérus et de l'ovaire sensibles ou résistants au cisplatine. Enfin, nous avons montré que cette potentialisation passe par l'inhibition du recrutement des protéines impliquées dans l'initiation et la réalisation des mécanismes de réparation par recombinaison homologue. Ces résultats suggèrent qu'en inhibant simultanément les vois initiés par ATR et ATM, l'activité thérapeutique des ETs pourrait être potentialisée en clinique.Ecteinascidins (Trabectedin, Lurbinectedin) are novel marine derived natural products, DNA minor groove binders and active against chemo-resistant cancers. The purpose of my thesis was to 1) characterize the DNA damage response (DDR) to both trabectedin and lurbinectedin 2) to establish whether the pharmacological abrogation of cell response induced by DNA damage (ATM, ATR, Chk1, Chk2) can modulate the therapeutic activity of ETs. Our results show that both compounds activate the ATM/Chk2 (ataxia-telangiectasia mutated/checkpoint kinase 2) and ATR/Chk1 (ATM and RAD3-related/checkpoint kinase 1) pathways. Interestingly, the pharmacological inhibition of either Chk1/2, ATR or ATM kinases is not accompanied by a significant improvement of either trabectedin or lurbinectedin cytotoxic activity. However, the simultaneous inhibition of both ATM and ATR strongly potentiates the activity of both ETs. Importantly, these results are not restricted to HeLa cells but can also be extended to cisplatin-sensitive or -resistant ovarian carcinoma cell lines. Finally, we showed that the concomitant inhibition of both ATR and ATM is an absolute requirement to efficiently block the initiation and realization of homologous recombination repair mechanisms. Together, our data identify ATR and ATM as central coordinators of the DDR to trabectedin and lurbinectedin and provide a mechanistic rational for combinations of these compounds with both ATR and ATM inhibitors

    BRCA2 is needed for both repair and cell cycle arrest in mammalian cells exposed to S23906, an anticancer monofunctional DNA binder

    No full text
    <p>Repair of DNA-targeted anticancer agents is an active area of investigation of both fundamental and clinical interest. However, most studies have focused on a small number of compounds limiting our understanding of both DNA repair and the DNA damage response. S23906 is an acronycine derivative that shows strong activity toward solid tumors in experimental models. S23906 forms bulky monofunctional DNA adducts in the minor groove which leads to destabilization of the double-stranded helix. We now report that S23906 induces formation of DNA double strand breaks that are processed through homologous recombination (HR) but not Non-Homologous End-Joining (NHEJ) repair. Interestingly, S23906 exposure was accompanied by a higher sensitivity of BRCA2-deficient cells compared to other HR deficient cell lines and by an S-phase accumulation in wild-type (wt), but not in BRCA2-deficient cells. Recently, we have shown that S23906-induced S phase arrest was mediated by the checkpoint kinase Chk1. However, its activated phosphorylated form is equally induced by S23906 in wt and BRCA2-deficient cells, likely indicating a role for BRCA2 downstream of Chk1. Accordingly, override of the S phase arrest by either 7-hydroxystaurosporine (UCN-01) or AZD7762 potentiates the cytotoxic activity of S23906 in wt, but not in BRCA2-deficient cells. Together, our findings suggest that the pronounced sensitivity of BRCA2-deficient cells to S23906 is due to both a defective S-phase arrest and the absence of HR repair. Tumors with deficiencies for proteins involved in HR, and BRCA2 in particular, may thus show increased sensitivity to S23906, thereby providing a rationale for patient selection in clinical trials.</p

    A microconductometric ethanol sensor prepared through encapsulation of alcohol dehydrogenase in chitosan: application to the determination of alcoholic content in headspace above beverages

    No full text
    International audienceA conductometric transducer is proposed for the first time for the detection of ethanol vapor. This ethanol microsensor is prepared by encapsulation of alcohol dehydrogenase (ADH) in chitosan. Interdigitated electrodes fabricated by silicon technology were used. The electrodeposition of chitosan allows the addressing of the chitosan film on the microconductometric devices and to encapsulate ADH and nicotinamide adenine dinucleotide (NAD?), which was monitored by FTIR. The analytical performance of the ethanol microsensor was determined in gaseous methanol, ethanol, and acetone samples, collected from the headspace above aqueous solutions of known concentration. The response time (tRec) of the sensor varies from 7 to 21 s from lower concentrations to higher concentrations. The detection limit is 0.12v/v % in the gas phase, correspondingto 0.22 M in the liquid phase. The relative standard deviation for the same sensor is from 12% for lower concentrations to 2% for higher concentrations. The ethanol sensor presents 2.6 times lower sensitivity for methanol and 28.3 times lower sensitivity for acetone. A detection of ethanol in the headspace of a red wine sample lead to an alcohol content in good agreement with the value given by the producer

    Acquired TET2 mutation in one patient with familial platelet disorder with predisposition to AML led to the development of pre-leukaemic clone resulting in T2-ALL and AML-M0

    No full text
    International audienceFamilial platelet disorder with predisposition to acute myeloid leukaemia (FPD/AML) is characterized by germline RUNX1 mutations, thrombocy-topaenia, platelet dysfunction and a risk of developing acute myeloid and in rare cases lymphoid T leukaemia. Here, we focus on a case of a man with a familial history of RUNX1 R174Q mutation who developed at the age of 42 years a T2-ALL and, 2 years after remission, an AML-M0. Both AML-M0 and T2-ALL blast populations demonstrated a loss of 1p36.32-23 and 17q11.2 regions as well as other small deletions, clonal rearrangements of both TCRc and TCRd and a presence of 18 variants at a frequency of more than 40%. Additional variants were identified only in T2-ALL or in AML-M0 evoking the existence of a common original clone, which gave rise to subclonal populations. Next generation sequen-cing (NGS) performed on peripheral blood-derived CD34 + cells 5 years prior to T2-ALL development revealed only the missense TET2 P1962T mutation at a frequency of 1%, which increases to more than 40% in fully transformed leukaemic T2-ALL and AML-M0 clones. This result suggests that TET2 P1962T mutation in association with germline RUNX1 R174Q mutation leads to amplification of a haematopoietic clone susceptible to acquire other transforming alterations

    2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery

    Get PDF
    S
    corecore