56 research outputs found

    A bioinformatics toolkit: in silico tools and online resources for investigating genetic variation

    Get PDF
    With the advent of large-scale next-generation sequencing initiatives, there is an increasing importance to interpret and understand the potential phenotypic influence of identified genetic variation and its significance in the human genome. Bioinformatics analyses can provide useful information to assist with variant interpretation. This review provides an overview of tools/resources currently available, and how they can help predict the impact of genetic variation at the deoxyribonucleic acid, ribonucleic acid, and protein level

    Spatial structure normalises working memory performance in Parkinson\u27s disease

    Get PDF
    Cognitive deficits are a frequent symptom of Parkinson\u27s disease (PD), particularly in the domain of spatial working memory (WM). Despite numerous demonstrations of aberrant WM in patients, there is a lack of understanding about how, if at all, their WM is fundamentally altered. Most notably, it is unclear whether span – the yardstick upon which most WM models are built – is compromised by the disease. Moreover, it is also unknown whether WM deficits occur in all patients or only exist in a sub-group who are executively impaired. We assessed the factors that influenced spatial span in medicated patients by varying the complexity of to-be-remembered items. Principally, we manipulated the ease with which items could enter – or be blocked from – WM by varying the level of structure in memoranda. Despite having similar levels of executive performance to controls, PD patients were only impaired when remembering information that lacked spatial, easy-to-chunk, structure. Patients\u27 executive function, however, did not influence this effect. The ease with which patients could control WM was further examined by presenting irrelevant information during encoding, varying the level of structure in irrelevant information and manipulating the amount of switching between relevant and irrelevant information. Disease did not significantly alter the effect of these manipulations. Rather, patients\u27 executive performance constrained the detrimental effect of irrelevant information on WM. Thus, PD patients\u27 spatial span is predominantly determined by level of structure in to-be-remembered information, whereas their level of executive function may mitigate against the detrimental effect of irrelevant information

    The importance of sustained attention in early Alzheimer\u27s disease

    Get PDF
    Introduction: There is conflicting evidence regarding impairment of sustained attention in early Alzheimer\u27s disease (AD). We examine whether sustained attention is impaired and predicts deficits in other cognitive domains in early AD. Methods: Fifty-one patients with early AD (MMSE \u3e 18) and 15 healthy elderly controls were recruited. The sustained attention to response task (SART) was used to assess sustained attention. A subset of 25 patients also performed tasks assessing general cognitive function (ADAS-Cog), episodic memory (Logical memory scale, Paired Associates Learning), executive function (verbal fluency, grammatical reasoning) and working memory (digit and spatial span). Results: AD patients were significantly impaired on the SART compared to healthy controls (total error ÎČ = 19.75, p = 0.027). SART errors significantly correlated with MMSE score (Spearman\u27s rho = −0.338, p = 0.015) and significantly predicted deficits in ADAS-Cog (ÎČ = 0.14, p = 0.004). Discussions: Patients with early AD have significant deficits in sustained attention, as measured using the SART. This may impair performance on general cognitive testing, and therefore should be taken into account during clinical assessment, and everyday management of individuals with early AD. Copyright © 2016 John Wiley & Sons, Ltd

    The European Association for Haemophilia and Allied Disorders (EAHAD) Coagulation Factor Variant Databases: Important resources for haemostasis clinicians and researchers

    Get PDF
    Haemophilia published by John Wiley & Sons Ltd Introduction: Advances in genomic sequencing have facilitated the sequencing of genes associated with disorders of haemostasis. The identification of variants within genes and access to curated data incorporating structural, functional, evolutionary as well as phenotypic data has become increasingly important in order to ascribe pathogenicity. Aim: The European Association for Haemophilia and Allied Disorders (EAHAD) Coagulation Factor Variant Database Project aims to provide a single port of entry to a web-accessible resource for variants in genes involved in clinical bleeding disorders. Results: New databases have evolved from previously developed single gene variant coagulation database projects, incorporating new data, new analysis tools and a new common database architecture with new interfaces and filters. These new databases currently present information about the genotype, phenotype (laboratory and clinical) and structural and functional effects of variants described in the genes of factor (F) VII (F7), FVIII (F8), FIX (F9) and von Willebrand factor (VWF). Conclusion: The project has improved the quality and quantity of information available to the haemostasis research and clinical communities, thereby enabling accurate classification of disease severity in order to make assessments of likely pathogenicity

    The EAHAD blood coagulation factor VII variant database

    Get PDF
    Hereditary blood coagulation factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder resulting from variants in the gene encoding FVII (F7 ). Integration of genetic variation with functional consequences on protein function is essential for the interpretation of the pathogenicity of novel variants. Here, we describe the integration of previous locus‐specific databases for F7 into a single curated database with enhanced features. The database provides access to in silico analyses that may be useful in the prediction of variant pathogenicity as well as cross‐species sequence alignments, structural information, and functional and clinical severity described for each variant, where appropriate. The variant data is shared with the F7 Leiden Open Variation Database. The updated database now includes 221 unique variants, representing gene variants identified in 728 individuals. Single nucleotide variants are the most common type (88%) with missense representing 74% of these variants. A number of variants are found with relatively high minor allele frequencies that are not pathogenic but contribute significantly to the likely pathogenicity of coinherited variants due to their effect on FVII plasma levels. This comprehensive collection of curated information significantly aids the assessment of pathogenicity

    Characterization of large in-frame von Willebrand factor deletions highlights differing pathogenic mechanisms

    Get PDF
    Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion

    “Making voices heard
”: Index on Censorship as Advocacy Journalism

    Get PDF
    The magazine Index on Censorship has sought, since its launch in 1972, to provide a space where censorship and abuses against freedom of expression have been identified, highlighted and challenged. Originally set up by a collection of writers and intellectuals who were concerned at the levels of state censorship and repression of artists in and under the influence of the Soviet Union and elsewhere, ‘Index’ has provided those championing the values of freedom of expression with a platform for highlighting human rights abuses, curtailment of civil liberties and formal and informal censorship globally. Charting its inception and development between 1971 and 1974, the paper is the first to situate the journal within the specific academic literature on activist media (Janowitz, 1975; Waisbord, 2009; Fisher, 2016). In doing so the paper advances an argument which draws on the drivers and motivations behind the publication’s launch to signal the development of a particular justification or ‘advocacy’ of a left-libertarian civic model of freedom of speech

    The common VWF single nucleotide variants c.2365A>G and c.2385T>C modify VWF biosynthesis and clearance

    Get PDF
    Plasma levels of von Willebrand factor (VWF) vary considerably in the general population and this variation has been linked to several genetic and environmental factors. Genetic factors include 2 common single nucleotide variants (SNVs) located in VWF, rs1063856 (c.2365A>G) and rs1063857 (c.2385T>C), although to date the mechanistic basis for their association with VWF level is unknown. Using genotypic/phenotypic information from a European healthy control population, in vitro analyses of recombinant VWF expressing both SNVs, and in vivo murine models, this study determined the precise nature of their association with VWF level and investigated the mechanism(s) involved. Possession of either SNV corresponded with a significant increase in plasma VWF in healthy controls (P G on VWF levels was also confirmed in vivo. This increase in VWF protein corresponded to an increase in VWF messenger RNA (mRNA) resulting, in part, from prolonged mRNA half-life. In addition, coinheritance of both SNVs was associated with a lower VWF propeptide-to-VWF antigen ratio in healthy controls (P < .05) and a longer VWF half-life in VWF knockout mice (P < .0001). Both SNVs therefore directly increase VWF plasma levels through a combined influence on VWF biosynthesis and clearance, and may have an impact on disease phenotype in both hemostatic and thrombotic disorders

    Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them

    Get PDF
    Tuberculosis still remains a global health emergency, claiming 1.5 million lives in 2013. The bacterium responsible for this disease, Mycobacterium tuberculosis (M.tb), has successfully survived within hostile host environments, adapting to immune defence mechanisms, for centuries. This has resulted in a disease that is challenging to treat, requiring lengthy chemotherapy with multi-drug regimens. One explanation for this difficulty in eliminating M.tb bacilli in vivo is the disparate action of antimicrobials on heterogeneous populations of M.tb, where mycobacterial physiological state may influence drug efficacy. In order to develop improved drug combinations that effectively target diverse mycobacterial phenotypes, it is important to understand how such subpopulations of M.tb are formed during human infection. We review here the in vitro and in vivo systems used to model M.tb subpopulations that may persist during drug therapy, and offer aspirations for future research in this field

    Transcriptional diversity during lineage commitment of human blood progenitors.

    Get PDF
    Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.The work described in this article was primarily supported by the European Commission Seventh Framework Program through the BLUEPRINT grant with code HEALTH-F5-2011-282510 (D.H., F.B., G.C., J.H.A.M., K.D., L.C., M.F., S.C., S.F., and S.P.G.). Research in the Ouwehand laboratory is further supported by program grants from the National Institute for Health Research (NIHR, www.nihr.ac.uk; to A.A., M.K., P.P., S.B.G.J., S.N., and W.H.O.) and the British Heart Foundation under nos. RP-PG-0310-1002 and RG/09/12/28096 (www.bhf.org.uk; to A.R. and W.J.A.). K.F. and M.K. were supported by Marie Curie funding from the NETSIM FP7 program funded by the European Commission. The laboratory receives funding from the NHS Blood and Transplant for facilities. The Cambridge BioResource (www.cambridgebioresource.org.uk), the Cell Phenotyping Hub, and the Cambridge Translational GenOmics laboratory (www.catgo.org.uk) are supported by an NIHR grant to the Cambridge NIHR Biomedical Research Centre (BRC). The BRIDGE-Bleeding and Platelet Disorders Consortium is supported by the NIHR BioResource—Rare Diseases (http://bioresource.nihr.ac.uk/; to E.T., N.F., and Whole Exome Sequencing effort). Research in the Soranzo laboratory (L.V., N.S., and S. Watt) is further supported by the Wellcome Trust (Grant Codes WT098051 and WT091310) and the EU FP7 EPIGENESYS initiative (Grant Code 257082). Research in the Cvejic laboratory (A. Cvejic and C.L.) is funded by the Cancer Research UK under grant no. C45041/A14953. S.J.S. is funded by NIHR. M.E.F. is supported by a British Heart Foundation Clinical Research Training Fellowship, no. FS/12/27/29405. E.B.-M. is supported by a Wellcome Trust grant, no. 084183/Z/07/Z. Research in the Laffan laboratory is supported by Imperial College BRC. F.A.C., C.L., and S. Westbury are supported by Medical Research Council Clinical Training Fellowships, and T.B. by a British Society of Haematology/NHS Blood and Transplant grant. R.J.R. is a Principal Research Fellow of the Wellcome Trust, grant no. 082961/Z/07/Z. Research in the Flicek laboratory is also supported by the Wellcome Trust (grant no. 095908) and EMBL. Research in the Bertone laboratory is supported by EMBL. K.F. and C.v.G. are supported by FWO-Vlaanderen through grant G.0B17.13N. P.F. is a compensated member of the Omicia Inc. Scientific Advisory Board. This study made use of data generated by the UK10K Consortium, derived from samples from the Cohorts arm of the project.This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on 26/9/14 in volume 345, number 6204, DOI: 10.1126/science.1251033. This version will be under embargo until the 26th of March 2015
    • 

    corecore