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Abstract 
With the advent of large-scale next generation sequencing initiatives, there is an 

increasing importance to interpret and understand the potential phenotypic influence 

of identified genetic variation and its significance in the human genome. 

Bioinformatics analyses can provide useful information to assist with variant 

interpretation. This review provides an overview of tools / resources currently 

available, and how they can help predict the impact of genetic variation at the DNA, 

RNA and protein level. 
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Introduction 
Clinical, diagnostic and research groups working in the field of hemostasis and 

thrombosis generate considerable data concerning genetic variation. Traditionally, 

this information has derived from targeted analysis of genes linked to a specific 

disease phenotype (e.g. investigating von Willebrand factor (VWF) in patients 

diagnosed with von Willebrand disease).1 Additional data also derives from genome-

wide association studies (GWAS) aimed at identifying genetic loci that may influence 

plasma protein levels2,3 or that are associated with a specific phenotype, e.g. 

coronary artery disease.4,5 The advent of next generation sequencing (NGS) has 

increased the amount of genetic information obtained from targeted analysis6-8 and is 

also generating a wealth of information on genetic variation throughout the human 

genome.9,10 

Although this information on genetic variation represents an invaluable resource, it is 

essential to properly interpret and understand the relevance of identified genetic 

variants within the human genome in order to determine whether they have a 

potential functional effect. Current guidelines from the American College of Medical 

Genetics and Genomics highlight that many lines of evidence are required to 

effectively classify genetic variants and assign pathogenicity,11 one of which is 

information obtained from bioinformatics analyses. This review aims to provide an 

overview of the many free in silico tools and resources currently available online that 

can help clinicians / scientists predict the potential impact of genetic variants at the 

DNA, RNA and protein level, and therefore assist with variant classification. 

 

Online resources for DNA level investigations 

Descriptions for the majority of reported genetic variants would usually be at the 

DNA level using either genomic coordinates (e.g. chr12:g.6044368T>C) or a specific 

location within a genetic locus (e.g. VWF:c.2365A>G). Usually, the first stage in 

evaluating genetic variants is to investigate the literature and databases for existing 

knowledge. 

 

Genome browsers and variant databases 
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Genome browsers (Ensembl, the National Center for Biotechnology Information 

(NCBI) Genome Data Viewer (GDV) and University of California Santa Cruz (UCSC) 

Genomics Institute (Table 1)) can be useful initial resources as they bring together 

extensive information on the human genome and other species. This includes 

information on known genetic variants, genotype-phenotype correlations, sequence 

conservation, transcription factor binding sites (TFBS) and expressed gene 

transcripts. These browsers also allow investigation of genetic variation at the 

precise nucleotide location or within the wider genomic context. While it may be 

difficult to identify relevant information on these browsers, especially for first-time 

users, useful tutorials on how to utilize Ensembl, GDV and UCSC are available 

online (Table 1). 

Several online variant databases detail the population frequency of genetic variants 

(Table 1). These resources provide indications of variant pathogenicity because 

common variants in the general population are generally less likely to be disease 

causing. However, variant frequencies can differ between ethnicities and frequency 

data may derive from disease-specific populations, which may influence data 

interpretation. The Exome Aggregation Consortium (ExAC) database and the 

Genome Aggregation Database (gnomAD) act as repositories of exonic and/or 

genomic sequencing data aligned to the human GRCh37/hg19 genome assembly.10 

Data derive from a variety of large-scale sequencing projects (e.g. 1000 Genomes) 

and various disease-specific population studies (e.g. the Framingham Heart Study), 

and includes populations from varying ethnicities. Currently, there is data from 

60,706 unrelated individuals in ExAC (including data on copy number variation 

[CNV]) and from 138,632 unrelated individuals (15,496 screened via whole genome 

sequencing) in gnomAD. 

NCBI also has databases of annotated genetic variant information, including 

population frequencies where available, which link to the various genome browsers. 

Information about simple genetic variation, including single nucleotide variants (SNV) 

and small insertion / deletion (indel) variants, catalogued in the database of single 

nucleotide polymorphisms (dbSNP; Table 1), are given rs# identifiers. Large CNV 

(>50 bp in length), catalogued in the database of human genomic structural variation 

(dbVar; Table 1), are given nsv# identifiers. Similar to dbVar, the Database of 
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Genomic Variants (DGV; Table 1) also provides annotated information on large CNV 

>50 bp in length. 

Another NCBI database, ClinVar (Table 1), links genetic variants with reported 

phenotypic information to provide an assessment of their clinical significance.12 Data 

included are derived from clinical testing, research or extraction from the literature. 

Of particular use, each entry has a confidence score, which reflects the accuracy of 

the variant information and the evidence supporting clinical significance. 

Similar to ClinVar, locus-specific databases (LSDBs) such as those for VWF13 and 

coagulation factor IX (F9)14 are highly useful clinical and scientific resources. LSDBs 

available through the Leiden Open Variation Database (LOVD) installation provide 

searchable lists of genetic variants and relevant phenotypic information where 

available (Table 1). However, many genes associated with hemostatic / thrombotic 

disorders currently have limited data available due to a lack of a dedicated curator(s) 

to help maintain and populate the relevant LOVD installation. A notable exception is 

the recent establishment of the European Association for Haemophilia and Allied 

Disorders Coagulation Factor Variant Databases (EAHAD-CFDB; Table 1). This 

initiative is a combined set of LSDBs (currently incorporating F7, F8, F9 and VWF) 

using LOVD installations to provide genotype-phenotype correlations while also 

establishing enhanced databases for each factor focusing on nucleotide / amino acid 

sequence conservation and protein structure.14,15 

 

Mutalyzer 

Mutalyzer (Table 1) is an online suite of tools that at a basic level are designed to 

help ensure that genetic variants are described correctly according to current Human 

Genome Variation Society guidelines,16,17 maintaining consistency in the reporting of 

variant descriptions. However, the tools also convert NCBI dbSNP identifiers (e.g. 

rs1063856) or genomic coordinates (e.g. chr12:g.6044368T>C; 

NC_000012.12:g.6044368T>C) to coding DNA nomenclature, which can be useful 

when working with variants identified via GWAS or NGS strategies. 

The conversion of genomic coordinates in Mutalyzer also provides an indication as 

to whether a variant could affect various expressed gene transcripts. Genes (e.g. F7, 

GP6 and FLI1) can have several transcripts that may vary in length, number of 
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exons and/or exon/intron boundaries. This can be particularly relevant when 

investigating genetic variants because a coding variant in one transcript may be non-

coding in another transcript (Figure 1) and alternate transcripts can have different 

patterns of tissue expression. 

 

Tools for assessing the potential impact of DNA variation 

Computational alignments of nucleotide or amino acid sequences can provide an 

indication as to whether specific regions have functional importance because these 

regions are likely to demonstrate high evolutionary conservation. Several online tools 

are available that can produce multiple sequence alignments (Table 1) and both the 

GDV and UCSC browsers can create alignments of up to 100 vertebrate species. 

GDV, UCSC and the Exome Variant Server (Table 1) also provide measurement 

scores of evolutionary conservation utilizing either phylogenetic analysis with 

space/time models conservation (phastCons), phylogenetic P-values (phyloP), 

genomic evolutionary rate profiling (GERP) and/or GERP++ predictions. phastCons 

provides probability scores from 0 to 1 that each nucleotide belongs to a conserved 

element based on multiple alignments and the flanking nucleotide sequence, where 

a score closer to 1 indicates greater conservation.18 phyloP assigns positive scores 

for conserved regions and negative scores for regions predicted to be evolving at a 

fast rate.19 Both GERP and GERP++ provide maximum likelihood evolutionary rate 

estimation scores from -12.3 to 6.17, with positive scores representing conserved 

regions.20,21 

Highly conserved regions may indicate the presence of important nucleotide motifs 

regulating transcription such as TFBS. Genetic variants occurring in these locations 

can influence gene expression (e.g. the well-characterized hemophilia B Leyden 

variants in F922 and c.-1522_-1510del variant in VWF).23 Several online tools 

(ConTra v3, GenomeTraFac, GPMiner; Table 1) will screen inputted nucleotide 

sequence and/or specified genomic regions and predict potential regulatory features. 

In addition, the Ensembl browser provides data on regulatory regions derived from 

the Blueprint, ENCODE and Roadmap Epigenomics projects and indicates the 

activity level of regulatory features in specific cells / tissues.24 Likewise, the UCSC 

browser also provides data derived from the ENCODE project25 along with 
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information from Open Regulatory Annotation26 and information on CpG islands 

(which can indicate potential transcription start sites27). 

Online resources are also beginning to evaluate gene intolerance to provide 

additional evidence of variant pathogenicity. For example, a gene that has a 

comparatively high frequency of variants predicted to result in loss-of-function (LoF, 

e.g. nonsense or splicing mutations) is less likely to have disease-causing variants 

(i.e. LoF tolerant). ExAC provides a probability of being LoF intolerant (pLI) value for 

each gene,10 dividing them into LoF intolerant (pLI ≥ 0.9) or LoF tolerant (pLI ≤ 0.1) 

categories. Similarly, the residual variation intolerance score (RVIS; Table 1) uses 

data derived from both ExAC and gnomAD to rank genes based on whether they 

have more or less common functional genetic variation relative to the genome-wide 

expectation.28 A negative RVIS score and low percentile highlights a gene with fewer 

common functional mutations than expected (LoF intolerant) while a positive score 

and high percentile highlights a LoF tolerant gene. 

 

Online resources for RNA level investigations 

Analysis of genetic variation at a RNA level primarily concerns those tools applicable 

to predicting their effect on RNA splicing. However, genetic variants can influence 

RNA in other ways, so additional tools / resources can also be of use. 

 

RNA splicing prediction tools 

Genetic variants that occur within consensus motifs for 5’ splice acceptors, 3’ splice 

donors or intronic branch points can interfere with the interaction of the spliceosome 

complex, influencing the splicing of intronic sequence from the mature RNA causing 

full / partial exon skipping29-32 or intron retention.30 In addition, deep intronic variants 

can activate cryptic splice acceptors or donors causing intron retention33 or the 

formation of a pseudo-exon.34,35 

There are several in silico tools available to help predict the effect of variants on 

RNA splicing (Table 2), usually based on the comparison of inputted wild-type and 

variant DNA sequence via specific algorithms. Although several tools utilize their 

own custom prediction algorithms (i.e. GeneSplicer, Human Splicing Finder (HSF) 
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and SplicePort),36-38 the majority use either maximum entropy modelling (MEM) or 

neural network algorithms.39-42 Each algorithm will interpret inputted DNA sequence 

differently; therefore, it is important to obtain a consensus from several RNA splicing 

tools in order to generate the most accurate predictions.43 However, even consensus 

predictions do not always signify a genuine effect on RNA splicing as has recently 

been observed for a c.5998+182A>G variant in F8.33 

The influence of genetic variants on RNA may be commonly overlooked, except 

when variants occur within introns or exon/intron boundaries. Analyzing variants in 

coding regions using in silico RNA splicing prediction tools should however be 

standard practice. There are several examples where synonymous variants31,44 and 

even coding variants predicted to influence the protein (e.g. resulting in a missense 

change45) disrupt splicing. Furthermore, in addition to the spliceosome interaction, 

serine-arginine repeat proteins and heterogeneous nuclear ribonucleoproteins act to 

promote and inhibit RNA splicing respectively.46 These proteins interact with the 

RNA via exonic / intronic splice enhancer (ESE / ISE) and exonic / intronic splice 

silencer (ESS / ISS) motifs. Genetic variants creating or disrupting these motifs can 

influence splicing47,48 and investigations including assessment of these motifs have 

begun in the field of hemostasis / thrombosis.49,50 

Currently, there are few in silico tools available to investigate whether variants create 

or disrupt enhancer / silencer motifs (Table 2). Both ESEfinder and RESCUE-ESE 

are limited because as their names suggest they focus only on ESE motif 

predictions. However, both SFmap and HSF provide enhancer and silencer motif 

predictions. As with regular RNA splicing in silico tools, consensus predictions from 

several tools are likely to be the most accurate, but given the limited tools available 

this is difficult to achieve when investigating enhancer / silencer motifs. 

As an initial tool to investigate the effect of genetic variants on RNA splicing, HSF is 

probably the most appropriate as it incorporates predictions for all motifs currently 

known to be involved in RNA splicing, including predictions from other sources (i.e. 

MEM algorithms, ESEfinder and RESCUE-ESE).38 HSF also allows for multiple input 

options and provides its own consensus prediction, but the use of additional tools is 

still likely to improve overall accuracy. 

Additional RNA prediction tools 
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Not all genetic variants will influence RNA splicing, but may still have an impact at 

the RNA level. Micro RNAs (miRNAs) play a role in regulating gene expression and 

studies have highlighted interactions with coagulation factors.51,52 A useful (regularly 

updated) online resource for investigating whether genetic variants influence 

reported / potential miRNA binding targets or generate a potential miRNA binding 

target is miRBase (Table 2). 

Genetic variants (e.g. c.2365A>G and c.2385T>C in VWF53) can also influence the 

secondary structure of transcribed mRNA, thereby impacting on the overall RNA 

stability, which in turn can influence RNA production.54 Rtools provides a useful suite 

of prediction programs designed to compare inputted wild-type and variant DNA 

sequence and to highlight any differences in RNA secondary structure (Table 2). 

The abundance of tRNA molecules available for a given amino acid codon sequence 

can affect the rate at which mature mRNA is translated into protein via a process 

called codon usage bias, and this in turn can be influenced by genetic variation. For 

example, a synonymous c.459G>A variant in F9 reduces factor IX translation rate 

partly via an effect on codon usage (as the non-reference valine codon is less 

abundant; GTG = 28.1 vs. GTA = 7.1 codons present per 1000 codons).55 Several 

online tools provide information on codon usage frequency or calculation of codon 

usage frequency either in the human genome or for a specific gene, e.g. Graphical 

Codon Usage Analyser (GCUA) and the Codon Usage Database (CUD; Table 2). 

 

Online resources for protein level investigations 

Analysis at the protein level utilizes those tools applicable to predicting the effect of 

non-synonymous amino acid variation and those resources that provide further 

information on the structure and function of proteins found to harbor potentially 

pathogenic variants. 

 

Amino acid prediction tools 

Non-synonymous amino acid substitutions can have profound effects on protein 

structure and function leading to disease. It is therefore useful to predict the impact 

of these changes on a protein in order to differentiate disease causing variants from  
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variants that have neutral effect.56 Several studies have demonstrated that variants 

affecting protein function are more frequently found at positions conserved 

throughout evolution.57 In addition, variants that affect protein stability are crucial for 

molecular function and are also more likely to be deleterious.58,59 Based on these 

assumptions, multiple prediction tools have been developed that use sequence 

and/or structural information to predict the pathogenicity of a given variant (Table 3). 

Two commonly used prediction algorithms include, sorting intolerant from tolerant 

(SIFT)60 and polymorphism phenotyping v2 (PolyPhen-2).61 SIFT is a popular 

prediction tool that utilizes sequence homology and the physical properties of amino 

acids to determine a variant’s impact.60 SIFT constructs a multiple sequence 

alignment (MSA) and then considers the composition of amino acids appearing at 

the site of the substitution. A SIFT score is then calculated, ranging from 0 to 1, 

reflecting the probability of the new amino acid being observed (tolerated) at that 

site. Scores ranging from 0 to 0.05 are considered to impact protein function. Other 

prediction tools incorporate the SIFT algorithm into their analysis pipelines, notably 

Mutation Predictor (MutPred) and nonsynonymous single nucleotide polymorphism 

analyzer (nsSNPAnalyzer; Table 3). 

PolyPhen-2 uses both sequence and structural information to predict the effect of a 

given variant.61 This is achieved by constructing a MSA, performing functional 

annotation of SNV, extracting protein sequence and structural information and 

building a conservation profile. Based on these properties PolyPhen-2 then 

estimates the probability that the missense mutation is ‘probably damaging’, 

‘possibly damaging’ or ‘benign’.62 

It is important to remember that each tool and the algorithm it employs will provide 

varying levels of prediction accuracy. When compared to known deleterious variants, 

impact predictions of most tools were found to be accurate in ~60-80% of cases.63 A 

recent study assessing the use of in silico tools to predict the pathogenicity of known 

deleterious variants in antithrombin found that performance varied depending on the 

localization of the substitution within the secondary structure, with those in α-helices 

often misclassified as benign.64 In addition, variants known to disrupt 

posttranslational modifications were also misclassified.64 As with RNA splicing 

predictions, it is therefore useful to utilize several prediction tools to achieve an 

accurate consensus (e.g. hemostasis / thrombosis studies investigating variants in 
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αIIbβ3, ADAMTS13, FVIII and VWF used MutationTaster, PolyPhen-2, PROVEAN 

and SIFT).7,65-68 

 

Tools for assessing protein stability 

The effect of an amino acid substitution on the protein stability and function is an 

important consideration when trying to determine pathogenicity. Using a protein 

databank (PDB) file and a specified variant, tools such as Site Directed Mutator 

(SDM; Table 3) can calculate a stability difference score between the wild-type and 

the variant protein.69 Where the tertiary structure of a protein of interest is unknown 

and no PDB structure file exists, machine learning programs such as MUpro (Table 

3) predict protein stability changes using primary sequence data alone.70 However, 

while these tools may be useful in a research context, providing an extra line of 

evidence, they do not make any predictions about whether a substitution is 

damaging or deleterious. 

 

Other useful protein tools and resources 

There are several resources that can be utilized in the analysis of proteins (e.g. to 

identify protein domains / motifs or to investigate protein-protein interactions). The 

Swiss Institute for Bioinformatics ExPASy resource (Table 3) contains a 

comprehensive list of protein analysis tools along with useful summary 

descriptions.71 PDB provides 3D protein models that when imported into specialized 

molecular graphics programs such as Jmol and PyMOL (Table 3) allows 

visualization of a variant at the molecular level (e.g. to elucidate the impact of a novel 

deletion in αIIbβ372) or simulate molecular interactions (e.g. to interpret variation in 

the DNA-binding domain of FLI173). This may be particularly useful to resolve 

instances of variant misclassification by amino acid prediction tools. For many 

proteins of interest, the 3D structure is currently unknown, so no PDB structure entry 

exists. In these instances computational homology based modelling servers such as 

SWISS-MODEL provide a useful alternative.74 

Variants causing amino acid substitutions in the signal peptide (SP) region of a 

protein may cause disruption or loss of function due to defective localization of the 

protein and/or defective SP cleavage. For secretory proteins therefore, it is important 
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to consider the effect of substitutions that occur in the SP region. The SignalP 4.1 

server (Table 3) predicts the presence and location of SP cleavage sites in an amino 

acid sequence and can predict the effect of substitutions or deletions/duplications on 

SP cleavage.75 

 

Additional tools / resources for variant analysis 

While most in silico tools focus on specific predictions at the DNA, RNA or protein 

level, Combined Annotation Dependent Depletion (CADD) and the Ensembl browser 

Variant Effect Predictor (VEP; Table 4) both use multiple lines of evidence to provide 

an assessment of variant pathogenicity. CADD integrates multiple and diverse 

annotations to produce a single measure of deleteriousness (C-score) for a particular 

SNV; a C-score of ≥10 indicates a variant is in the top 10% of the most deleterious, a 

score of ≥20 in the top 1%, etc.76 VEP provides a detailed annotation for variant 

effects on transcripts, proteins and regulatory regions, but is also a flexible and 

customizable software suite, allowing the addition of tools such as CADD into the 

analysis pipeline.77 However, while CADD and VEP can complement other 

predictions to provide further consensus, they are not stand-alone tools. 

Studies involving whole genome sequencing, whole exome sequencing (WES) or 

transcriptome profiling (using RNA sequencing or expression array approaches), 

generate large gene / protein lists. It is desirable to be able to make sense of these 

lists and extract the biological information they contain. The Database for Annotation, 

Visualization and Integrated Discovery (DAVID; Table 4) is a high-throughput and 

integrated data mining tool able to map genes / proteins to a biological annotation 

and then highlight statistically over-represented or enriched annotations.78 This can 

enable clustering of gene / protein lists to a range of criteria including diseases, 

functional categories, gene ontology terms, pathways, protein domains, protein 

interactions and tissue expression. 

Finally, the use of protein abundance information from different tissue types may be 

helpful when prioritizing candidate genes, e.g. to identify proteins present in the 

platelet proteome following WES of patients with inherited platelet function disorders. 

The Protein Abundance Database (PaxDb; Table 4) is a useful meta-resource of 
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protein abundance data for model organisms, tissues and cell-lines that enables a 

quick check of a protein of interest, aiding gene prioritization.79 

 

Concluding remarks 

In silico tools and online resources serve as useful sources of information for 

clinicians / scientists investigating genetic variation. However, this information is only 

a prediction and not a definitive answer; it will provide evidence to link a variant to 

disease pathogenicity or help confirm / direct further investigations, e.g. in vitro and 

in vivo studies. For the most accurate and informative analyses of a variant(s) users 

should consider its effect at the DNA, RNA and protein level (Figure 2) utilizing all 

the tools / resources highlighted in this review as a bioinformatics toolkit (Figure 3). 
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Tables 

Table 1. Tools / resources for investigating genetic variation at the DNA level 

Tool / resource Web address 

Genome browsers with multiple functionality 

Ensembl24 http://www.ensembl.org/index.html 

(online user guide: https://www.ensembl.org/info/website/tutorials/index.html) 

GDV80 https://www.ncbi.nlm.nih.gov/genome/gdv/ 

(online user guide: https://www.ncbi.nlm.nih.gov/genome/gdv/browser/help/) 

UCSC81 https://genome.ucsc.edu/cgi-bin/hgGateway 

(online user guide: https://genome.ucsc.edu/training/) 

Annotated genetic variation and population frequency databases 

1000 Genomes9 http://www.internationalgenome.org/ 

dbSNP82 https://www.ncbi.nlm.nih.gov/snp 

dbVAR82 https://www.ncbi.nlm.nih.gov/dbvar 

DGV83 http://dgv.tcag.ca/dgv/app/home 

ExAC10 http://exac.broadinstitute.org/ 

Exome Variant Server http://evs.gs.washington.edu/EVS/ 

gnomAD10 http://gnomad.broadinstitute.org/ 

Databases providing genotype-phenotype correlations 

ClinVar12 https://www.ncbi.nlm.nih.gov/clinvar/ 

EAHAD-CFDB15 http://www.eahad-db.org/ 

LOVD https://databases.lovd.nl/shared/genes 

Sequence alignment toolsa 

Clustal Omega84 https://www.ebi.ac.uk/Tools/msa/clustalo/ 

MultAlin85 http://multalin.toulouse.inra.fr/multalin/ 

MUSCLE86 https://www.ebi.ac.uk/Tools/msa/muscle/ 

http://www.ensembl.org/index.html
https://www.ensembl.org/info/website/tutorials/index.html
https://www.ncbi.nlm.nih.gov/genome/gdv/
https://www.ncbi.nlm.nih.gov/genome/gdv/browser/help/
https://genome.ucsc.edu/cgi-bin/hgGateway
https://genome.ucsc.edu/training/
http://www.internationalgenome.org/
https://www.ncbi.nlm.nih.gov/snp
https://www.ncbi.nlm.nih.gov/dbvar
http://dgv.tcag.ca/dgv/app/home
http://exac.broadinstitute.org/
http://evs.gs.washington.edu/EVS/
http://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
http://www.eahad-db.org/
https://databases.lovd.nl/shared/genes
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://multalin.toulouse.inra.fr/multalin/
https://www.ebi.ac.uk/Tools/msa/muscle/
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Regulatory motif prediction tools 

ConTra v387 http://bioit2.irc.ugent.be/contra/v3/#/step/1 

GenomeTraFaC88 https://genometrafac.cchmc.org/genome-trafac/index.jsp 

GPMiner89 http://gpminer.mbc.nctu.edu.tw/index.php 

Other useful tools / resources 

Mutalyzer16 https://mutalyzer.nl/ 

RVIS28 http://genic-intolerance.org/ 

Sequence 

Manipulation Suitea,90 

http://www.bioinformatics.org/sms2/ 

aTools that analyze both nucleotide and amino acid sequences.

http://bioit2.irc.ugent.be/contra/v3/#/step/1
https://genometrafac.cchmc.org/genome-trafac/index.jsp
http://gpminer.mbc.nctu.edu.tw/index.php
https://mutalyzer.nl/
http://genic-intolerance.org/
http://www.bioinformatics.org/sms2/
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Table 2. Tools / resources for investigating genetic variation at the RNA level 

Tool / resource Web address 

RNA splicing prediction tools 

ASSP42 http://wangcomputing.com/assp/index.html 

BDGP40 http://www.fruitfly.org/seq_tools/splice.html 

ESEfinder91 http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home 

GeneSplicer36 http://www.cs.jhu.edu/~genomics/GeneSplicer/gene_spl.html 

HSF38 http://www.umd.be/HSF3/ 

MaxEntScan41 http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq_acc.html 

http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html 

NetGene239 http://www.cbs.dtu.dk/services/NetGene2/ 

RESCUE-ESE92 http://genes.mit.edu/burgelab/rescue-ese/ 

SFmap93 http://sfmap.technion.ac.il/ 

SplicePort37 http://spliceport.cbcb.umd.edu/ 

Other useful tools / resources 

CUD94 https://www.kazusa.or.jp/codon/ 

GCUA http://gcua.schoedl.de/index.html 

miRBase95,96 http://www.mirbase.org/ 

Rtools97 http://rtools.cbrc.jp/ 

http://wangcomputing.com/assp/index.html
http://www.fruitfly.org/seq_tools/splice.html
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://www.cs.jhu.edu/%7Egenomics/GeneSplicer/gene_spl.html
http://www.umd.be/HSF3/
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq_acc.html
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://www.cbs.dtu.dk/services/NetGene2/
http://genes.mit.edu/burgelab/rescue-ese/
http://sfmap.technion.ac.il/
http://spliceport.cbcb.umd.edu/
https://www.kazusa.or.jp/codon/
http://gcua.schoedl.de/index.html
http://www.mirbase.org/
http://rtools.cbrc.jp/
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Table 3. Tools / resources for investigating genetic variation at the protein 
level 

Tool / resource Web address 

Amino acid prediction tools 

Align-GVGD98 http://agvgd.hci.utah.edu/ 

MutationTaster99 http://www.mutationtaster.org/ 

MutPred100 http://mutpred1.mutdb.org/ 

nsSNPAnalyzer http://snpanalyzer.uthsc.edu/ 

PolyPhen-261 http://genetics.bwh.harvard.edu/pph2/ 

PON-P2101 http://structure.bmc.lu.se/PON-P2/ 

PROVEAN102 http://provean.jcvi.org/index.php 

SIFT103 http://sift.bii.a-star.edu.sg/ 

Tools for assessing protein stability 

MUpro70 http://mupro.proteomics.ics.uci.edu/ 

SDM69 http://marid.bioc.cam.ac.uk/sdm2 

Other useful tools / resources 

ExPASy71 https://www.expasy.org/proteomics 

Jmol http://jmol.sourceforge.net/ 

PyMOL https://pymol.org/2/ 

PDB104 https://www.wwpdb.org/ 

SignalP 4.175 http://www.cbs.dtu.dk/services/SignalP/ 

SWISS-MODEL74 https://swissmodel.expasy.org 

http://agvgd.hci.utah.edu/
http://www.mutationtaster.org/
http://mutpred1.mutdb.org/
http://snpanalyzer.uthsc.edu/
http://genetics.bwh.harvard.edu/pph2/
http://structure.bmc.lu.se/PON-P2/
http://provean.jcvi.org/index.php
http://sift.bii.a-star.edu.sg/
http://mupro.proteomics.ics.uci.edu/
http://marid.bioc.cam.ac.uk/sdm2
https://www.expasy.org/proteomics
http://jmol.sourceforge.net/
https://pymol.org/2/
https://www.wwpdb.org/
http://www.cbs.dtu.dk/services/SignalP/
https://swissmodel.expasy.org/
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Table 4. Other useful tools / resources 

Tool / resource Web address 

CADD76 https://cadd.gs.washington.edu/ 

DAVID78 https://david.ncifcrf.gov/home.jsp 

PaxDb79 https://pax-db.org/ 

VEP77 http://www.ensembl.org/Tools/VEP 

 

Figure legends 

Figure 1. The location of genetic variants can vary depending on the gene 
transcript. A) Expressed gene transcripts for F7, GP6 and FLI1. Shaded boxes and 

vertical lines represent exonic sequence. B) Examples of genetic variants in F7, GP6 

and FLI1 are reported using genomic coordinates, and their corresponding location 

in each gene transcript. 

 

Figure 2. Example bioinformatics analyses for three sequence variants in VWF 
(A: c.55G>A, p.(Gly19Arg); B: c.2365A>G, p.(Thr789Ala); C: c.3614G>A, 
p.(Arg1205His)). Different analyses at the DNA (green), RNA (yellow) and protein 

(blue) level can each provide useful information concerning a sequence variant, and 

analyses at one level (e.g. DNA) may prompt additional analyses at the other two 

levels (e.g. RNA and protein). Tools such as CADD and VEP provide information 

relating to all three levels of analysis. aConsensus utilizing MutationTaster, 

PolyPhen-2, PROVEAN and SIFT. bConsensus utilizing ASSP, BDGP, HSF and 

NetGene2. cConsensus utilizing HSF, RESCUE-ESE and SFmap. ESS, exonic 

splice silencer; SE, splice enhancer; SS, splice silencer; WT, wild-type. 

 

Figure 3. A bioinformatics toolkit quick reference guide. Suggested analyses at 

the DNA (green), RNA (yellow) and protein (blue) level are highlighted, along with 

the tools / resources that could be used. 

https://cadd.gs.washington.edu/
https://david.ncifcrf.gov/home.jsp
https://pax-db.org/
http://www.ensembl.org/Tools/VEP
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