414 research outputs found

    Fish, Coral, and Sponge Assemblages Associated With Altiphotic and Mesophotic Reefs Along the Guánica Biosphere Reserve Continental Shelf Edge, Southwest Puerto Rico

    Get PDF
    The benthic and fish communities of the central portion of the Guánica, Puerto Rico shelf edge were studied to determine species abundance, distributions and species overlap between two depth stratifications, 20 and 45 m, at eight sites. A total of 67 fish species belonging to 21 families were identified. Similar species richness estimates were observed between depths, though fish assemblage composition differed significantly, with observable changes in feeding guild contributions of herbivore and omnivore (20 m) to a deeper assemblage composed of piscivores and planktivores (45 m). Coral assemblages consisted of 31 species at 20 m and 11 species at 45 m, accounting for 17.0% (±1.76 SE) and 2.6% (±0.89 SE) benthic cover for the altiphotic and mesophotic surveys, respectively. The altiphotic and mesophotic coral reef communities support different scleractinian coral assemblages with minimal species overlap. Altiphotic surveys of sponges yielded a higher species richness than mesophotic, with 60 and 54 species respectively, and an overall total of 71 species identified from both depths, with 45 species overlapping (63.0%). The percent cover of sponges surveyed at altiphotic reefs accounted for 9.0% (±1.04 SE), while the percent cover of sponges surveyed at mesophotic reefs was 14.0% (±1.96 SE). Our data show fish, coral, and sponge assemblages are differentiated between 20 and 45 m along the Guánica shelf edge offshore of the Guánica Biosphere Reserve. This study represents the first observations for species distributions of adjacent altiphotic and mesophotic coral reef habitats along the Guánica shelf edge, as well as provides an annotated species list of the local sponge fauna. Combined, these results highlight the need for continued environmental stewardship and conservation in the area

    Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer

    Get PDF
    The underpinnings of STAT3 hyperphosphorylation resulting in enhanced signaling and cancer progression are incompletely understood. Loss-of-function mutations of enzymes that dephosphorylate STAT3, such as receptor protein tyrosine phosphatases, which are encoded by the PTPR gene family, represent a plausible mechanism of STAT3 hyperactivation. We analyzed whole exome sequencing (n = 374) and reverse-phase protein array data (n = 212) from head and neck squamous cell carcinomas (HNSCCs). PTPR mutations are most common and are associated with significantly increased phospho-STAT3 expression in HNSCC tumors. Expression of receptor-like protein tyrosine phosphatase T (PTPRT) mutant proteins induces STAT3 phosphorylation and cell survival, consistent with a “driver” phenotype. Computational modeling reveals functional consequences of PTPRT mutations on phospho-tyrosine–substrate interactions. A high mutation rate (30%) of PTPRs was found in HNSCC and 14 other solid tumors, suggesting that PTPR alterations, in particular PTPRT mutations, may define a subset of patients where STAT3 pathway inhibitors hold particular promise as effective therapeutic agents.Fil: Lui, Vivian Wai Yan. University of Pittsburgh; Estados UnidosFil: Peyser, Noah D.. University of Pittsburgh; Estados UnidosFil: Ng, Patrick Kwok-Shing. University Of Texas Md Anderson Cancer Center;Fil: Hritz, Jozef. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados Unidos. Masaryk University; República ChecaFil: Zeng, Yan. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Lu, Yiling. University Of Texas Md Anderson Cancer Center;Fil: Li, Hua. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Wang, Lin. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Gilbert, Breean R.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: General, Ignacio. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Bahar, Ivet. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Ju, Zhenlin. University Of Texas Md Anderson Cancer Center;Fil: Wang, Zhenghe. Case Western Reserve University; Estados UnidosFil: Pendleton, Kelsey P.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Xiao, Xiao. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Du, Yu. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Vries, John K.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Hammerman, Peter S.. Harvard Medical School; Estados UnidosFil: Garraway, Levi A.. Harvard Medical School; Estados UnidosFil: Mills, Gordon B.. University Of Texas Md Anderson Cancer Center;Fil: Johnson, Daniel E.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Grandis, Jennifer R.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados Unido

    Integrated RNA and DNA sequencing improves mutation detection in low purity tumors

    Get PDF
    Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors

    Challenges in EGFRvIII Detection in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Objective: Head and neck squamous cell carcinoma (HNSCC) accounts for more than 5% of all cancers worldwide. The mortality rate of HNSCC has remained unchanged (approximately 50%) over the last few decades. Ubiquitous overexpression of wild type EGFR in many solid tumors has led to the development of EGFR targeted therapies. EGFR can be constitutively activated via several mechanisms including the truncated, EGFR variant III isoform (EGFRvIII). EGFRvIII lacks exons 2–7 and has been reported to be present in up to 20–40% of HNSCC. EGFRvIII has been shown to contribute to cetuximab resistance. The mechanisms leading to EGFRvIII expression in HNSCC are unknown. The present investigation was undertaken to determine the etiology of EGFRvIII in HNSCC. Materials and Methods Fixed HNSCC and glioma tissues were analyzed by fluorescence in situ hybridization for EGFR amplification. DNA and RNA from fresh frozen specimens were used to determine the presence of EGFRvIII transcripts and the mechanisms of expression via PCR, RT-PCR and RNA sequencing. Results: Unlike glioma, EGFRvIII expression in HNSCC did not correlate with EGFR amplification. We found evidence of genomic deletion of the exon 2–7 in 6 of 7 HNSCC cases examined, however, the presence of genomic deletion did not always result in mRNA expression of EGFRvIII. RNA sequencing with automated alignment did not identify EGFRvIII due to microhomology between intron 1 and exon 8. RNA sequencing analyzed by manual alignment methods did not correlate well with RT-PCR and PCR findings. Conclusion: These findings suggest that genomic deletion as well as additional regulatory mechanisms may contribute to EGFRvIII expression in HNSCC. Further, large scale automated alignment of sequencing are unlikely to identify EGFRvIII and an assay specifically designed to detect EGFRvIII may be necessary to detect this altered form of EGFR in HNSCC tumors

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    Noisy-threshold control of cell death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies.</p> <p>Results</p> <p>Here, I show that these typical responses arise naturally from the interplay of intracellular variability with a threshold-based control mechanism that detects cellular changes in addition to just the cellular state itself. Implementation of this mechanism in a quantitative model for T-cell apoptosis, a prototypical example of programmed cell death, captures with exceptional accuracy experimental observations for different expression levels of the oncogene Bcl-x<sub>L </sub>and directly links adaptation with noise in an ATP threshold below which cells die.</p> <p>Conclusions</p> <p>These results indicate that oncogenes like Bcl-x<sub>L</sub>, besides regulating absolute death values, can have a novel role as active controllers of cell-cell variability and the extent of adaptation.</p

    Expression of Bcl-2 and Bax in Mouse Renal Tubules during Kidney Development

    Get PDF
    Bcl-2 and Bax play an important role in apoptosis regulation, as well as in cell adhesion and migration during kidney morphogenesis, which is structurally and functionally related to mitochondria. In order to elucidate the role of Bcl-2 and Bax during kidney development, it is essential to establish the exact location of their expression in the kidney. The present study localized their expression during kidney development. Kidneys from embryonic (E) 16-, 17-, 18-day-old mouse fetuses, and postnatal (P) 1-, 3-, 5-, 7-, 14-, 21-day-old pups were embedded in Epon. Semi-thin serial sections from two E17 kidneys underwent computer assisted 3D tubule tracing. The tracing was combined with a newly developed immunohistochemical technique, which enables immunohistochemistry on glutaraldehyde fixated plastic embedded sections. Thereby, the microstructure could be described in detail, and the immunochemistry can be performed using exactly the same sections. The study showed that Bcl-2 and Bax were strongly expressed in mature proximal convoluted tubules at all time points, less strongly expressed in proximal straight tubules, and only weakly in immature proximal tubules and distal tubules. No expression was detected in ureteric bud and other earlier developing structures, such as comma bodies, S shaped bodies, glomeruli, etc. Tubules expressing Bcl-2 only were occasionally observed. The present study showed that, during kidney development, Bcl-2 and Bax are expressed differently in the proximal and distal tubules, although these two tubule segments are almost equally equipped with mitochondria. The functional significance of the different expression of Bcl-2 and Bax in proximal and distal tubules is unknown. However, the findings of the present study suggest that the mitochondrial function differs between mature proximal tubules and in the rest of the tubules. The function of Bcl-2 and Bax during tubulogenesis still needs to be investigated
    corecore