303 research outputs found

    The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems

    Full text link
    The magnetisation relaxations of three different types of geometrically frustrated magnetic systems have been studied with the same experimental procedures as previously used in spin glasses. The materials investigated are Y2_2Mo2_2O7_7 (pyrochlore system), SrCr8.6_{8.6}Ga3.4_{3.4}O19_{19} (piled pairs of Kagom\'e layers) and (H3_3O)Fe3_3(SO4_4)2_2(OH)6_6 (jarosite compound). Despite a very small amount of disorder, all the samples exhibit many characteristic features of spin glass dynamics below a freezing temperature TgT_g, much smaller than their Curie-Weiss temperature θ\theta. The ageing properties of their thermoremanent magnetization can be well accounted for by the same scaling law as in spin glasses, and the values of the scaling exponents are very close. The effects of temperature variations during ageing have been specifically investigated. In the pyrochlore and the bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a certain temperature TpT_p re-initializes ageing and the evolution at the new temperature is the same as if the system were just quenched from above TgT_g. However, as the temperature is raised back to TpT_p, the sample recovers the state it had previously reached at that temperature. These features are known in spin glasses as rejuvenation and memory effects. They are clear signatures of the spin glass dynamics. In the Kagom\'e compound, there is also some rejuvenation and memory, but much larger temperature changes are needed to observe the effects. In that sense, the behaviour of this compound is quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings of the International Conference on Highly Frustrated Magnetism (HFM2003), August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France

    On the scaling and ageing behaviour of the alternating susceptibility in spin glasses and local scale-invariance

    Full text link
    The frequency-dependent scaling of the dispersive and dissipative parts of the alternating susceptibility is studied for spin glasses at criticality. An extension of the usual ωt\omega t-scaling is proposed. Simulational data from the three-dimensional Ising spin glass agree with this new scaling form and moreover reproduce well the scaling functions explicitly calculated for systems satisfying local scale-invariance. There is also a qualitative agreement with existing experimental data.Comment: 19 pages, 2 figures, to appear in special issue of J. Phys. Cond. Matt. dedicated to Lothar Schaefer on the occasion of his 60th birthday, final form with IOP macro

    Slow dynamics and aging in spin-glasses

    Full text link
    Contribution presented by Eric Vincent in the Conference `Complex Behaviour of Glassy Systems', Sitges, Barcelona, Spain, June, 1996. It contains a review of the experimental results on Slow dynamics and aging in spin-glasses. It also presents their comparison with recent theoretical developments in the description of the out of equilibrium dynamics of disordered systems; namely, the trap model and the mean-field theory.Comment: 35 pages, 12 figures, macro lmamult.sty (included

    Effective action for Superconductors and BCS-Bose crossover

    Full text link
    A standard perturbative expansion around the mean-field solution is used to derive the low-energy effective action for superconductors at T=0. Taking into account the density fluctuations at the outset we get the effective action where the density ρ\rho is the conjugated momentum to the phase θ\theta of the order parameter. In the hydrodynamic regime, the dynamics of the superconductor is described by a time dependent non-linear Schr\"odinger equation (TDNLS) for the field Ψ(x)=ρ/2eiθ\Psi(x)=\sqrt{\rho/2} e^{i\theta}. The evolution of the density fluctuations in the crossover from weak-coupling (BCS) to strong-coupling (Bose condensation of localized pairs) superconductivity is discussed for the attractive Hubbard model. In the bosonic limit, the TDNLS equation reduces to the the Gross-Pitaevskii equation for the order parameter, as in the standard description of superfluidity. The conditions under which a phase-only action can be derived in the presence of a long-range interaction to describe the physics of the superconductivity of ``bad metals'' are discussed.Comment: 13 pages, accepted for publication on Phys. Rev.

    Mean-field theory of temperature cycling experiments in spin-glasses

    Full text link
    We study analytically the effect of temperature cyclings in mean-field spin-glasses. In accordance with real experiments, we obtain a strong reinitialization of the dynamics on decreasing the temperature combined with memory effects when the original high temperature is restored. The same calculation applied to mean-field models of structural glasses shows no such reinitialization, again in accordance with experiments. In this context, we derive some relations between experimentally accessible quantities and propose new experimental protocols. Finally, we briefly discuss the effect of field cyclings during isothermal aging.Comment: Some misprints corrected, references updated, final version to apper in PR

    Temperature shifts in the Sinai model: static and dynamical effects

    Full text link
    We study analytically and numerically the role of temperature shifts in the simplest model where the energy landscape is explicitely hierarchical, namely the Sinai model. This model has both attractive features (there are valleys within valleys in a strict self similar sense), but also one important drawback: there is no phase transition so that the model is, in the large size limit, effectively at zero temperature. We compute various static chaos indicators, that are found to be trivial in the large size limit, but exhibit interesting features for finite sizes. Correspondingly, for finite times, some interesting rejuvenation effects, related to the self similar nature of the potential, are observed. Still, the separation of time scales/length scales with temperatures in this model is much weaker that in experimental spin-glasses.Comment: 19 pages, Revtex4, eps figure

    The {\eta}'-carbon potential at low meson momenta

    Full text link
    The production of η\eta^\prime mesons in coincidence with forward-going protons has been studied in photon-induced reactions on 12^{12}C and on a liquid hydrogen (LH2_2) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The η\eta^\prime mesons have been identified via the ηπ0π0η6γ\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF2_2 array at polar angles of 2θp112^{\circ} \le \theta _{p} \le 11^{\circ}. Under these kinematic constraints the η\eta^\prime mesons are produced with relatively low kinetic energy (\approx 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the η\eta^\prime-carbon potential at low meson momenta by comparing with collision model calculations of the η\eta^\prime kinetic energy distribution and excitation function. Fitting the latter data for η\eta^\prime mesons going backwards in the center-of-mass system yields a potential depth of V = -(44 ±\pm 16(stat)±\pm15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average η\eta^\prime momenta of \approx 1.1 GeV/cc. Within the experimental uncertainties, there is no indication of a momentum dependence of the η\eta^\prime-carbon potential. The LH2_2 data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for η\eta^\prime photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.0607

    The N(1520) 3/2- helicity amplitudes from an energy-independent multipole analysis based on new polarization data on photoproduction of neutral pions

    Full text link
    New data on the polarization observables T, P, and H for the reaction γppπ0\gamma p \to p\pi^0 are reported. The results are extracted from azimuthal asymmetries when a transversely polarized butanol target and a linearly polarized photon beam are used. The data were taken at the Bonn electron stretcher accelerator ELSA using the CBELSA/TAPS detector. These and earlier data are used to perform a truncated energy-independent partial wave analysis in sliced-energy bins. This energy-independent analysis is compared to the results from energy-dependent partial wave analyses

    Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR

    Full text link
    The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the \PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of pˉ+p\bar p +p into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction pˉ+pe++e\bar p +p \to e^++ e^- can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q214q^2\simeq 14 (GeV/c)2^2. The total pˉ+pe++e\bar p +p\to e^++e^- cross section will be measured up to q228q^2\simeq 28 (GeV/c)2^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations, 4 tables, 9 figure

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance
    corecore