104 research outputs found

    Reading the Mind in the Eyes of Children Test (RME-C-T): Development and Validation of a Complex Emotion Recognition Test

    Get PDF
    Much research has been devoted to the development of emotion recognition tests that can be used to investigate how individuals identify and discriminate emotional expressions of other individuals. One of the most prominent emotion recognition tests is the Reading the Mind in the Eyes Test (RME-T). The original RME-T has been widely used to investigate how individuals recognize complex emotional expressions from the eye region of adult faces. However, the RME-T can only be used to investigate inter-individual differences in complex emotion recognition during the processing of adult faces. To extend its usefulness, we developed a modified version of the RME-T, the Reading the Mind in the Eyes of Children Test (RME-C-T). The RME-C-T can be used to investigate how individuals recognize complex emotional expressions from the eye region of child faces. However, the validity of the RME-C-T has not been evaluated yet. We, thus, administered the RME-C-T together with the RME-T to a sample of healthy adult participants (n = 119). The Interpersonal Reactivity Index (IRI) and the Toronto Alexithymia Scale (TAS) were also administered. Participants’ RME-C-T performance correlated with participants’ RME-T performance, implying that the RME-C-T measures similar emotion recognition abilities as the RME-T. Participants’ RME-C-T performance also correlated with participants’ IRI and TAS scores, indicating that these emotion recognition abilities are affected by empathetic and alexithymic traits. Moreover, participants’ RME-C-T performance differed between participants with high and low TAS scores, suggesting that the RME-C-T is sensitive enough to detect impairments in these emotion recognition abilities. The RME-C-T, thus, turned out to be a valid measure of inter-individual differences in complex emotion recognition during the processing of child faces

    Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory

    Get PDF
    There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300–500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400–700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180–220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional—particularly unpleasant—backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.This research was supported by a grant from the German Research Foundation (DFG, WE 4801/3-1) to Mathias Weymar at the University of Greifswald. Carlos Ventura-Bort (E-2013-15) was supported by the program for international stays of the Universitat Jaume I of Castellón, Spain

    COMTVal158Met Genotype Affects Complex Emotion Recognition in Healthy Men and Women

    Get PDF
    The catechol-o-methyltransferase (COMT) gene has repeatedly been shown to change amygdala activity and amygdala-prefrontal connectivity during face processing. Although the COMT gene appears to induce a negativity bias during the neural processing of faces, it is currently unclear whether a similar negativity bias emerges during the behavioral processing of faces. To address this issue, we investigated differences in complex emotion recognition between participants (n = 181) that had been a priori genotyped for functional polymorphisms of the COMT (Val158Met) and serotonin transporter (5-HTTLPR) gene. We were, thus, able to analyze differences in face processing on basis of participants’ COMT genotype while controlling for participants’ 5-HTTLPR genotype. Variations of participants’ COMT but not 5-HTTLPR genotype accounted for differences in participants’ emotion recognition performance: Met/Met carriers and Met/Val carriers were more accurate in the recognition of negative, but not neutral or positive, expressions than Val/Val carriers. We, therefore, revealed a similar negativity bias during the behavioral processing of faces that has already been demonstrated during the neural processing of faces, indicating that genotype-dependent changes in catecholamine metabolism may affect face processing on the behavioral and neural level

    Latent class growth analyses reveal overrepresentation of dysfunctional fear conditioning trajectories in patients with anxiety-related disorders compared to controls

    Get PDF
    Recent meta-analyses indicated differences in fear acquisition and extinction between patients with anxiety related disorders and comparison subjects. However, these effects are small and may hold for only a subsample of patients. To investigate individual trajectories in fear acquisition and extinction across patients with anxiety-related disorders (N = 104; before treatment) and comparison subjects (N = 93), data from a previous study (Duits et al., 2017) were re-analyzed using data-driven latent class growth analyses. In this explorative study, subjective fear ratings, shock expectancy ratings and startle responses were used as outcome measures. Fear and expectancy ratings, but not startle data, yielded distinct fear conditioning trajectories across participants. Patients were, compared to controls, overrepresented in two distinct dysfunctional fear conditioning trajectories: impaired safety learning and poor fear extinction to danger cues. The profiling of individual patterns allowed to determine that whereas a subset of patients showed trajectories of dysfunctional fear conditioning, a significant proportion of patients (?50 %) did not. The strength of trajectory analyses as opposed to group analyses is that it allows the identification of individuals with dysfunctional fear conditioning. Results suggested that dysfunctional fear learning may also be associated with poor treatment outcome, but further research in larger samples is needed to address this question

    Oral Contraceptives Impair Complex Emotion Recognition in Healthy Women

    Get PDF
    Despite the widespread use of oral contraceptives (OCs), remarkably little is known about the effects of OCs on emotion, cognition, and behavior. However, coincidental findings suggest that OCs impair the ability to recognize others’ emotional expressions, which may have serious consequences in interpersonal contexts. To further investigate the effects of OCs on emotion recognition, we tested whether women who were using OCs (n = 42) would be less accurate in the recognition of complex emotional expressions than women who were not using OCs (n = 53). In addition, we explored whether these differences in emotion recognition would depend on women’s menstrual cycle phase. We found that women with OC use were indeed less accurate in the recognition of complex expressions than women without OC use, in particular during the processing of expressions that were difficult to recognize. These differences in emotion recognition did not depend on women’s menstrual cycle phase. Our findings, thus, suggest that OCs impair women’s emotion recognition, which should be taken into account when informing women about the side-effects of OC use

    Resting State Vagally-Mediated Heart Rate Variability Is Associated With Neural Activity During Explicit Emotion Regulation

    Get PDF
    Resting state vagally mediated heart rate variability (vmHRV) is related to difficulties in emotion regulation (ER). The prefrontal cortex (PFC) provides inhibitory control over the amygdala during ER. Previous studies linked vmHRV with activity in the ventromedial PFC (vmPFC) during implicit ER. To date no study examined the relation between vmHRV and brain activity during explicit ER. vmHRV was measured during a 7 min baseline at T1 2–5 days preceding T2. At T2 n = 24 participants (50% female, Mage = 24.6 years) viewed neutral or emotional pictures of pleasant or unpleasant valence and were instructed to intensify or to reduce their present emotion using two ER strategies (reappraisal and responsemodulation) or to passively view the picture. Participants rated the valence of their emotional state from pleasant to unpleasant after ER. Whole-brain fMRI data were collected using a 1.5-T-scanner. We observed an association between resting state vmHRV and brain activation in the PFC and the amygdala during ER of unpleasant emotions. Groups based on vmHRV showed significant differences in the modulation of amygdala activity as a function of ER strategy. In participants with high vmHRV amygdala activity was modulated only when using reappraisal and for low vmHRV participants only when using response modulation. Similar, dorsomedial PFC activity in high vmHRV participants was increased when using reappraisal and in low vmHRV participants when using response modulation to regulate unpleasant emotions. These results suggest that individuals with low vmHRV might have difficulties in recruiting prefrontal brain areas necessary for the modulation of amygdala activity during explicit ER

    Neuropeptide S receptor gene - converging evidence for a role in panic disorder

    Get PDF
    Animal studies have suggested neuropeptide S (NPS) and its receptor (NPSR) to be involved in the pathogenesis of anxiety-related behavior. In this study, a multilevel approach was applied to further elucidate the role of NPS in the etiology of human anxiety. The functional NPSR A/T (AsnÂč⁰⁷Ile) variant (rs324981) was investigated for association with (1) panic disorder with and without agoraphobia in two large, independent case-control studies, (2) dimensional anxiety traits, (3) autonomic arousal level during a behavioral avoidance test and (4) brain activation correlates of anxiety-related emotional processing in panic disorder. The more active NPSR rs324981 T allele was found to be associated with panic disorder in the female subgroup of patients in both samples as well as in a meta-analytic approach. The T risk allele was further related to elevated anxiety sensitivity, increased heart rate and higher symptom reports during a behavioral avoidance test as well as decreased activity in the dorsolateral prefrontal, lateral orbitofrontal and anterior cingulate cortex during processing of fearful faces in patients with panic disorder. The present results provide converging evidence for a female-dominant role of NPSR gene variation in panic disorder potentially through heightened autonomic arousal and distorted processing of anxiety-relevant emotional stimuli

    Vagal control of the heart decreases during increasing imminence of interoceptive threat in patients with panic disorder and agoraphobia

    Get PDF
    Theoretically, panic disorder and agoraphobia pathology can be conceptualized as a cascade of dynamically changing defensive responses to threat cues from inside the body. Guided by this trans‑diagnostic model we tested the interaction between defensive activation and vagal control as a marker of prefrontal inhibition of subcortical defensive activation. We investigated ultra‑short‑term changes of vagally controlled high frequency heart rate variability (HRV) during a standardized threat challenge (entrapment) in n = 232 patients with panic disorder and agoraphobia, and its interaction with various indices of defensive activation. We found a strong inverse relationship between HRV and heart rate during threat, which was stronger at the beginning of exposure. Patients with a strong increase in heart rate showed a deactivation of prefrontal vagal control while patients showing less heart rate acceleration showed an increase in vagal control. Moreover, vagal control collapsed in case of imminent threat, i.e., when body symptoms increase and seem to get out of control. In these cases of defensive action patients either fled from the situation or experienced a panic attack. Active avoidance, panic attacks, and increased sympathetic arousal are associated with an inability to maintain vagal control over the heart suggesting that teaching such regulation strategies during exposure treatment might be helpful to keep prefrontal control, particularly during the transition zone from post‑encounter to circa strike defense

    Explicit attention interferes with selective emotion processing in human extrastriate cortex

    Get PDF
    BACKGROUND: Brain imaging and event-related potential studies provide strong evidence that emotional stimuli guide selective attention in visual processing. A reflection of the emotional attention capture is the increased Early Posterior Negativity (EPN) for pleasant and unpleasant compared to neutral images (~150–300 ms poststimulus). The present study explored whether this early emotion discrimination reflects an automatic phenomenon or is subject to interference by competing processing demands. Thus, emotional processing was assessed while participants performed a concurrent feature-based attention task varying in processing demands. RESULTS: Participants successfully performed the primary visual attention task as revealed by behavioral performance and selected event-related potential components (Selection Negativity and P3b). Replicating previous results, emotional modulation of the EPN was observed in a task condition with low processing demands. In contrast, pleasant and unpleasant pictures failed to elicit increased EPN amplitudes compared to neutral images in more difficult explicit attention task conditions. Further analyses determined that even the processing of pleasant and unpleasant pictures high in emotional arousal is subject to interference in experimental conditions with high task demand. Taken together, performing demanding feature-based counting tasks interfered with differential emotion processing indexed by the EPN. CONCLUSION: The present findings demonstrate that taxing processing resources by a competing primary visual attention task markedly attenuated the early discrimination of emotional from neutral picture contents. Thus, these results provide further empirical support for an interference account of the emotion-attention interaction under conditions of competition. Previous studies revealed the interference of selective emotion processing when attentional resources were directed to locations of explicitly task-relevant stimuli. The present data suggest that interference of emotion processing by competing task demands is a more general phenomenon extending to the domain of feature-based attention. Furthermore, the results are inconsistent with the notion of effortlessness, i.e., early emotion discrimination despite concurrent task demands. These findings implicate to assess the presumed automatic nature of emotion processing at the level of specific aspects rather than considering automaticity as an all-or-none phenomenon

    Behavioural and functional evidence revealing the role of RBFOX1 variation in multiple psychiatric disorders and traits

    Get PDF
    Common variation in the gene encoding the neuron-specific RNA splicing factor RNA Binding Fox-1 Homolog 1 (RBFOX1) has been identified as a risk factor for several psychiatric conditions, and rare genetic variants have been found causal for autism spectrum disorder (ASD). Here, we explored the genetic landscape of RBFOX1 more deeply, integrating evidence from existing and new human studies as well as studies in Rbfox1 knockout mice. Mining existing data from large-scale studies of human common genetic variants, we confirmed gene-based and genome-wide association of RBFOX1 with risk tolerance, major depressive disorder and schizophrenia. Data on six mental disorders revealed copy number losses and gains to be more frequent in ASD cases than in controls. Consistently, RBFOX1 expression appeared decreased in post-mortem frontal and temporal cortices of individuals with ASD and prefrontal cortex of individuals with schizophrenia. Brain-functional MRI studies demonstrated that carriers of a common RBFOX1 variant, rs6500744, displayed increased neural reactivity to emotional stimuli, reduced prefrontal processing during cognitive control, and enhanced fear expression after fear conditioning, going along with increased avoidance behaviour. Investigating Rbfox1 neuron-specific knockout mice allowed us to further specify the role of this gene in behaviour. The model was characterised by pronounced hyperactivity, stereotyped behaviour, impairments in fear acquisition and extinction, reduced social interest, and lack of aggression; it provides excellent construct and face validity as an animal model of ASD. In conclusion, convergent translational evidence shows that common variants in RBFOX1 are associated with a broad spectrum of psychiatric traits and disorders, while rare genetic variation seems to expose to early-onset neurodevelopmental psychiatric disorders with and without developmental delay like ASD, in particular. Studying the pleiotropic nature of RBFOX1 can profoundly enhance our understanding of mental disorder vulnerability
    • 

    corecore