493 research outputs found

    Treatment experiences of Latinas after diagnosis of breast cancer

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138310/1/cncr30702.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138310/2/cncr30702_am.pd

    Radiocarbon dates from jar and coffin burials of the Cardamom Mountains reveal a unique mortuary ritual in Cambodia's late- to post-Angkor period (15th-17th centuries AD)

    Get PDF
    We present the first radiocarbon dates from previously unrecorded, secondary burials in the Cardamom Mountains, Cambodia. The mortuary ritual incorporates nautical tradeware ceramic jars and log coffins fashioned from locally harvested trees as burial containers, which were set out on exposed rock ledges at 10 sites in the eastern Cardamom Massif. The suite of 28 14C ages from 4 of these sites (Khnorng Sroal, Phnom Pel, Damnak Samdech, and Khnang Tathan) provides the first estimation of the overall time depth of the practice. The most reliable calendar date ranges from the 4 sites reveals a high- land burial ritual unrelated to lowland Khmer culture that was practiced from cal AD 1395 to 1650. The time period is concurrent with the 15th century decline of Angkor as the capital of the Khmer kingdom and its demise about AD 1432, and the subsequent shift of power to new Mekong trade ports such as Phnom Penh, Udong, and Lovek. We discuss the Cardamom ritual relative to known funerary rituals of the pre to post-Angkorian periods, and to similar exposed jar and coffin burial rituals in Mainland and Island Southeast Asia

    The acquisition of Sign Language: The impact of phonetic complexity on phonology

    Get PDF
    Research into the effect of phonetic complexity on phonological acquisition has a long history in spoken languages. This paper considers the effect of phonetics on phonological development in a signed language. We report on an experiment in which nonword-repetition methodology was adapted so as to examine in a systematic way how phonetic complexity in two phonological parameters of signed languages — handshape and movement — affects the perception and articulation of signs. Ninety-one Deaf children aged 3–11 acquiring British Sign Language (BSL) and 46 hearing nonsigners aged 6–11 repeated a set of 40 nonsense signs. For Deaf children, repetition accuracy improved with age, correlated with wider BSL abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing group were similarly affected by phonetic complexity, suggesting that common visual and motoric factors are at play when processing linguistic information in the visuo-gestural modality

    HIF-1–dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia

    Get PDF
    Extracellular adenosine (Ado) has been implicated as central signaling molecule during conditions of limited oxygen availability (hypoxia), regulating physiologic outcomes as diverse as vascular leak, leukocyte activation, and accumulation. Presently, the molecular mechanisms that elevate extracellular Ado during hypoxia are unclear. In the present study, we pursued the hypothesis that diminished uptake of Ado effectively enhances extracellular Ado signaling. Initial studies indicated that the half-life of Ado was increased by as much as fivefold after exposure of endothelia to hypoxia. Examination of expressional levels of the equilibrative nucleoside transporter (ENT)1 and ENT2 revealed a transcriptionally dependent decrease in mRNA, protein, and function in endothelia and epithelia. Examination of the ENT1 promoter identified a hypoxia inducible factor 1 (HIF-1)–dependent repression of ENT1 during hypoxia. Using in vitro and in vivo models of Ado signaling, we revealed that decreased Ado uptake promotes vascular barrier and dampens neutrophil tissue accumulation during hypoxia. Moreover, epithelial Hif1α mutant animals displayed increased epithelial ENT1 expression. Together, these results identify transcriptional repression of ENT as an innate mechanism to elevate extracellular Ado during hypoxia

    Suppressor of cytokine signaling 3 (SOCS3) is not an independent biomarker of colorectal adenoma risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation and its associated pathologies are increasingly suggested as risk factors for colorectal cancer (CRC) development. Previous research from our group has shown that increased levels of circulating, pro-inflammatory cytokines IL-6 and TNFα promote colorectal adenoma risk. Emerging data in mice and humans suggest that Suppressor of Cytokine Signaling 3 (SOCS3) may act as a tumor suppressor in the intestine, and decreased SOCS3 expression may promote CRC. As SOCS3 has been shown to inhibit the actions of IL-6 and TNFα in the intestine, we hypothesized that decreased SOCS3 expression in normal mucosa may predispose to adenomas and thus increase risk for CRC.</p> <p>Findings</p> <p>We examined SOCS3 mRNA levels in normal mucosa biopsies of 322 screening colonoscopy patients (93 with adenoma and 229 without adenoma) using real-time qRT-PCR. Logistic regression analysis was used to generate odds ratios (OR) and 95% confidence intervals to determine if low SOCS3 expression was associated with adenoma status. Median SOCS3 values did not differ between patients with or without adenoma. Logistic regression analysis showed no association (unadjusted or adjusted for age and sex) between SOCS3 and colorectal adenomas.</p> <p>Conclusions</p> <p>Low SOCS3 mRNA expression is not an independent biomarker of colorectal adenoma risk in the normal mucosa. SOCS3 silencing likely occurs later in CRC progression.</p

    Metabolic control and bone health in adolescents with type 1 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adults with type 1 diabetes (T1D) have decreased bone mineral density (BMD) and increased fracture risk, yet the etiologies remain elusive. Early detection of derangements in bone biomarkers during adolescence could lead to timely recognition. In adolescents with T1D, we evaluated the relationships between metabolic control, BMD, and bone anabolic and turnover markers.</p> <p>Methods</p> <p>Cross-sectional study of 57 adolescent subjects with T1D who had HbA1c consistently ≥ 9% (Poor Control, PC n = 27) or < 9% (Favorable Control, FC n = 30) for two years prior to enrollment. Subjects had T1DM for at least three years and were without diabetes complications, known celiac disease, or other chronic diseases.</p> <p>Results</p> <p>There were no differences between HbA1c groups in BMD, components of the IGF system, or 25-hydroxyvitamin D status. The prevalence of 25-hydroxyvitamin D abnormalities was similar to that seen in the general adolescent population. Few patients met the recommended dietary allowance (RDA) for vitamin D or calcium.</p> <p>Conclusions</p> <p>These data provide no evidence of association between degree of metabolic control and BMD in adolescents with T1D. Adolescents with T1D have a high prevalence of serum 25-hydroxyvitamin D abnormalities. Longitudinal studies are needed to evaluate the predictive value of vitamin D abnormalities on fracture risk.</p

    Deep Sequencing of the Nicastrin Gene in Pooled DNA, the Identification of Genetic Variants That Affect Risk of Alzheimer's Disease

    Get PDF
    Nicastrin is an obligatory component of the γ-secretase; the enzyme complex that leads to the production of Aβ fragments critically central to the pathogenesis of Alzheimer's disease (AD). Analyses of the effects of common variation in this gene on risk for late onset AD have been inconclusive. We investigated the effect of rare variation in the coding regions of the Nicastrin gene in a cohort of AD patients and matched controls using an innovative pooling approach and next generation sequencing. Five SNPs were identified and validated by individual genotyping from 311 cases and 360 controls. Association analysis identified a non-synonymous rare SNP (N417Y) with a statistically higher frequency in cases compared to controls in the Greek population (OR 3.994, CI 1.105–14.439, p = 0.035). This finding warrants further investigation in a larger cohort and adds weight to the hypothesis that rare variation explains some of genetic heritability still to be identified in Alzheimer's disease

    Above-ground biomass and structure of 260 African tropical forests.

    Get PDF
    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes

    Development and evaluation of low-volume tests to detect and characterize antibodies to SARS-CoV-2

    Get PDF
    Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries

    The Pediatric Cell Atlas:Defining the Growth Phase of Human Development at Single-Cell Resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan
    corecore