5,307 research outputs found

    Probing Multiple Sight Lines through the SN 1006 Remnant by Ultraviolet Absorption Spectroscopy

    Get PDF
    Absorption-line spectroscopy is an effective probe for cold ejecta within a supernova remnant (SNR), provided that suitable background UV sources can be identified. For the SN 1006 remnant we have identified four such sources, in addition to the much-studied Schweitzer-Middleditch (SM) star. We have used STIS on the Hubble Space Telescope to obtain UV spectra of all four sources, to study core samples of the SN 1006 interior. The line of sight closest to the center of the SNR shell, passing only 20 away, is to a V = 19.5 QSO at z = 1.026. Its spectrum shows broad Fe II absorption lines, asymmetric with red wings broader than blue. The similarity of these profiles to those seen in the SM star, which is 28 from the center in the opposite direction, confirms the existence of a bulge on the far side of SN 1006. The Fe II equivalent widths in the QSO spectrum are ~50% greater than in the SM star, suggesting that somewhat more iron may be present within SN 1006 than studies of the SM star alone have indicated, but this is still far short of what most Type Ia supernova models require. The absorption spectrum against a brighter z = 0.337 QSO seen at 57% of the shell radius shows broad silicon absorption lines but no iron other than narrow, probably interstellar lines. The cold iron expanding in this direction must be confined within v 5200 km s-1, also consistent with a high-velocity bulge on the far side only. The broad silicon lines indicate that the silicon layer has expanded beyond this point, and that it has probably been heated by a reverse shock—conclusions consistent with the clumpy X-ray structure and anomalous abundances observed from Chandra in this region. Finally, the spectra of two ~A0 V stars near the southern shell rim show no broad or unusually strong absorption lines, suggesting that the low-ionization ejecta are confined within 83% of the shell radius, at least at the azimuths of these background sources

    The Response of Dispersion-Strengthened Copper Alloys to High Fluence Neutron Irradiation at 415⁰C

    Get PDF
    Various oxide-dispersion-strengthened copper alloys have been irradiated to 150 dpa at 415°C in the Fast Flux Test Facility (FFTF). The Al2O3-strengthened GlidCop™ alloys, followed closely by a HfO2-strengthened alloy, displayed the best swelling resistance, electrical conductivity, and tensile properties. The conductivity of the HfO2-strengthened alloy reached a plateau at the higher levels of irradiation, instead of exhibiting the steady decrease in conductivity observed in the other alloys. A high initial oxygen content resulted in significantly higher swelling for a series of castable oxide-dispersion-strengthened alloys, while a Cr2O3 -strengthened alloys showed poor resistance to radiations

    Worker heterogeneity, new monopsony, and training

    Get PDF
    A worker's output depends not only on his/her own ability but also on that of colleagues, who can facilitate the performance of tasks that each individual cannot accomplish on his/her own. We show that this common-sense observation generates monopsony power and is sufficient to explain why employers might expend resources on training employees even when the training is of use to other firms. We show that training will take place in better-than-average or ‘good’ firms enjoying greater monopsony power, whereas ‘bad’ firms will have low-ability workers unlikely to receive much training

    IBM-1 description of the fission products 108,110,112^{108,110,112}Ru

    Get PDF
    IBM-1} calculations for the fission products 108,110,112^{108,110,112}Ru have been carried out. The even-even isotopes of Ru can be described as transitional nuclei situated between the U(5) (spherical vibrator) and SO(6) (γ\gamma-unstable rotor) symmetries of the Interacting Boson Model. At first, a Hamiltonian with only one- and two-body terms has been used. Excitation energies and BB(E2) ratios of gamma transitions have been calculated. A satisfactory agreement has been obtained, with the exception of the odd-even staggering in the quasi-γ\gamma bands of 110,112^{110,112}Ru. The observed pattern is rather similar to the one for a rigid triaxial rotor. A calculation based on a Hamiltonian with three-body terms was able to remove this discrepancy. The relation between the IBM and the triaxial rotor model was also examined.Comment: 22 pages, 8 figure

    Species-diagnostic microsatellite loci for the fig wasp genus Pegoscapus

    Get PDF
    To obtain tools for the estimation of inbreeding and assignment of offspring to matrilines, we developed 13 microsatellite loci from the fig wasps that pollinate Ficus obtusifolia. Based on morphological studies, it was thought that a single species (Pegoscapus hoffmeyer) pollinated this fig. However, our data revealed the presence of two coexisting cryptic species. Several diagnostic microsatellite markers may be used to distinguish these two cryptic species. The new microsatellites can be used across a wide range of fig-pollinating wasp species for both evolutionary and population genetic studies

    Specifying computer-supported collaboration scripts

    Get PDF
    Collaboration scripts are activity programs which aim to foster collaborative learning by structuring interaction between learners. Computer-supported collaboration scripts generally suffer from the problem of being restrained to a specific learning platform and learning context. A standardization of collaboration scripts first requires a specification of collaboration scripts that integrates multiple perspectives from computer science, education and psychology. So far, only few and limited attempts at such specifications have been made. This paper aims to consolidate and expand these approaches in light of recent findings and to propose a generic framework for the specification of collaboration scripts. The framework enables a description of collaboration scripts using a small number of components (participants, activities, roles, resources and groups) and mechanisms (task distribution, group formation and sequencing)

    Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2

    Get PDF
    Rationale: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodelling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A (PKA) signalling appears to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signalling microdomains. Objective: How individual cAMP microdomains impact on cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Methods and Results: Using pharmacological and genetic manipulation of PDE activity we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy whereas increasing cAMP levels via PDE2 inhibition is anti-hypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of PKA isoforms we demonstrate that the anti-hypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a PKA type II subset leading to phosphorylation of the nuclear factor of activated T cells (NFAT). Conclusions: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo and its inhibition may have therapeutic applications

    Time Evolution of the Reverse Shock in SN 1006

    Get PDF
    The Schweizer-Middleditch star, located behind the SN 1006 remnant and near its center in projection, provides the opportunity to study cold, expanding ejecta within the SN 1006 shell through UV absorption. Especially notable is an extremely sharp red edge to the Si II 1260 Angstrom feature, which stems from the fastest moving ejecta on the far side of the SN 1006 shell--material that is just encountering the reverse shock. Comparing HST far-UV spectra obtained with COS in 2010 and with STIS in 1999, we have measured the change in this feature over the intervening 10.5-year baseline. We find that the sharp red edge of the Si II feature has shifted blueward by 0.19 +/- 0.05 Angstroms, which means that the material hitting the reverse shock in 2010 was moving slower by 44 +/- 11 km/s than the material that was hitting it in 1999, a change corresponding to - 4.2 +/- 1.0 km/s/yr. This is the first observational confirmation of a long-predicted dynamic effect for a reverse shock: that the shock will work its way inward through expanding supernova ejecta and encounter ever slower material as it proceeds. We also find that the column density of shocked Si II (material that has passed through the reverse shock) has decreased by 7 +/- 2% over the ten-year period. The decrease could indicate that in this direction the reverse shock has been ploughing through a dense clump of Si,leading to pressure and density transients.Comment: 8 pages, includes 5 figure

    How metal films de-wet substrates - identifying the kinetic pathways and energetic driving forces

    Full text link
    We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands form directly during film growth at elevated temperature. The Cr mesas (wedges) form as Cr film steps advance down the staircase of substrate steps, another example of the critical role that substrate steps play in 3D island formation

    Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an analytic-numerical approach

    Full text link
    Five types of blow-up patterns that can occur for the 4th-order semilinear parabolic equation of reaction-diffusion type u_t= -\Delta^2 u + |u|^{p-1} u \quad {in} \quad \ren \times (0,T), p>1, \quad \lim_{t \to T^-}\sup_{x \in \ren} |u(x,t)|= +\iy, are discussed. For the semilinear heat equation ut=Δu+upu_t= \Delta u+ u^p, various blow-up patterns were under scrutiny since 1980s, while the case of higher-order diffusion was studied much less, regardless a wide range of its application.Comment: 41 pages, 27 figure
    corecore