60 research outputs found

    The Performance of an Integrated Transformer in a DC/DC Converter

    Get PDF
    The separation between the low-voltage part and high-voltage part of the converter is formed by a transformer that transfers power while jamming the DC ring. The resonant mode power oscillator is utilized to allow elevated competence power transfer. The on-chip transformer is probable to have elevated value inductance, elevated quality factors and elevated coupling coefficient to decrease the loss in the oscillation. The performance of a transformer is extremely dependent on the structure, topology and other essential structures that create it compatible with the integrated circuits IC process such as patterned ground shield (PGS). Different types of transformers are modeled and simulated in MATLAB; the performances are compared to select the optimum design. The on-chip transformer model is simulated and the Results of MATLAB simulation are exposed, showing an excellent agreement in radio frequency RF

    Modeling and Structure Optimization of Tapped Transformer

    Get PDF
    In this paper, a simplified circuit model of the tapped transformer structure has been presented to extract the Geometric and technology parameters and offer better physical understanding. Moreover, the structure of planar transformer has been optimized by using changing the width and space of the primary coil, so as to enlarge the quality factor Q and high coupling coefficient K. To verify the results obtained by using these models, we have compared them with the results obtained by employing the MATLAB simulator. Very good agreement has been recorded for the effective primary inductance value, whereas the effective primary quality factor value has shown a somewhat larger deviation than the inductance

    Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration

    Get PDF
    Mutations in SIGMAR1, which encodes the Sigma 1 receptor, cause a familial form of amyotrophic lateral sclerosis, but the underlying molecular mechanisms are unclear. Bernard-Marissal et al. reveal that disruption of Sigma 1 receptor function disturbs endoplasmic reticulum-mitochondria interactions and functions, resulting in degeneration specifically of motor neuron

    Epitaxial Synthesis of Blue Phosphorene

    Full text link
    Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) has been investigated by molecular beam epitaxy and the obtained structure has been described as a blue-phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a band gap value at least equal to 0.8 eV, have been synthesized on Au(111). Our experimental investigations, coupled with DFT calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures have been determined.Comment: This paper reports on the epitaxial synthesis of blue phosphoren

    Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2x1)

    Get PDF
    We report results on the self-assembly of silicon nanoribbons on the (2x1) reconstructed Au(110) surface under ultra-high vacuum conditions. Upon adsorption of 0.2 monolayer (ML) of silicon the (2x1) reconstruction of Au(110) is replaced by an ordered surface alloy. Above this coverage a new superstructure is revealed by low electron energy diffraction (LEED) which becomes sharper at 0.3 Si ML. This superstructure corresponds to Si nanoribbons all oriented along the [-110] direction as revealed by LEED and scanning tunneling microscopy (STM). STM and high-resolution photoemission spectroscopy indicate that the nanoribbons are flat and predominantly 1.6 nm wide. In addition the silicon atoms show signatures of two chemical environments corresponding to the edge and center of the ribbons.Comment: Under publication in Applied Physics Letter

    Silicon Sheets By Redox Assisted Chemical Exfoliation

    Full text link
    In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission electron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.Comment: Accepted in J. Phys.: Condens. Matte

    Direct observation of electronic band gap and hot carrier dynamics in GeAs semiconductor

    Full text link
    Germanium arsenide (GeAs) is a layered semiconductor with remarkably anisotropic physical, thermoelectric and optical properties, and a promising candidate for multifunctional devices based on in-plane polarization dependent response. Understanding the underlying mechanism of such devices requires the knowledge of GeAs electronic band structure and of the hot carrier dynamics in its conduction band, whose details are still unclear. In this work, we investigated the properties of occupied and photoexcited states of GeAs in energy-momentum space, by combining scanning tunneling spectroscopy (STS), angle-resolved photoemission spectroscopy (ARPES) and time-resolved ARPES. We found that, GeAs is an indirect gap semiconductor having an electronic gap of 0.8 eV, for which the conduction band minimum (CBM) is located at the Gamma point while the valence band maximum (VBM) is out of Gamma. A Stark broadening of the valence band is observed immediately after photoexcitation, which can be attributed to the effects of the electrical field at the surface induced by inhomogeneous screening. Moreover, the hot electrons relaxation time of 1.56 ps down to the CBM which is dominated from both inter-valley and intra-valley coupling. Besides their relevance for our understanding of GeAs, these findings present general interest for the design on high performance thermoelectric and optoelectronic devices based on 2D semiconductors

    PLEKHG5 deficiency leads to an intermediate form of autosomal-recessive Charcot-Marie-Tooth disease

    Get PDF
    Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cell
    • …
    corecore