8 research outputs found

    LncRNA–miRNA–mRNA Networks of Gastrointestinal Cancers Representing Common and Specific LncRNAs and mRNAs

    Get PDF
    Gastrointestinal (GI) cancers are responsible for approximately half of cancer-related deaths, highlighting the need for the identification of distinct and common features in their clinicopathological characteristics. Long ncRNA (lncRNAs), which are involved in competitive endogenous RNA (ceRNA) networks with critical roles in biological processes, constitute a substantial number of non-coding RNAs. Therefore, our study aimed to investigate the similarities and differences in the ceRNA networks of The Cancer Genome Atlas (TCGA)-GI cancers. We performed a comprehensive bioinformatics analysis of ceRNA networks for TCGA-GI cancers in terms of the deferential mRNA, lncRNA, and miRNA expression levels, ceRNA networks, overall survival analysis, correlation analysis, pathological cancer stages, and gene set enrichment analysis. Our study revealed several common and distinct mRNAs and lncRNAs with prognostic values in these networks. It was specifically noteworthy that MAGI2-AS3 lncRNA was found to be shared in almost all GI cancers. Moreover, the most common shared mRNAs between GI cancers were MEIS1, PPP1R3C, ADAMTSL3, RIPOR2, and MYLK. For each cancer ceRNA network, we found that the expression level of a number of lncRNAs and mRNAs was specific. Furthermore, our study provided compelling evidence that several genes, most notably KDELC1, can act as novel proto-oncogenes in cancers. This, in turn, can highlight their role as new prognostic and therapeutic targets. Moreover, we found cell cycle and extracellular matrix structural constituent as the top shared KEGG and molecular function, respectively, among GI cancers. Our study revealed several known lncRNAs and known and unknown mRNAs in GI cancers with diagnostic and prognostic value

    Resveratrol as an enhancer of apoptosis in cancer: a mechanistic review

    No full text
    The resistance to therapy of cancer cells is a challenge for achieving an appropriate therapeutic outcome. Cancer (stem) cells possess several mechanisms for increasing their survival following exposure to toxic agents such as chemotherapy drugs, radiation, as well as immunotherapy. Evidences show that apoptosis plays a key role in the response of cancer (stem) cells and their multi-drug resistance. Modulation of both intrinsic and extrinsic pathways of apoptosis can increase the efficiency of tumor response and amplify the therapeutic effects of radiotherapy, chemotherapy, targeted therapy, and also immunotherapy. To date, several agents, as adjuvant, have been proposed to overcome the resistance of cancer cells to apoptosis. Natural products are interesting because of the low toxicity on normal tissues. Resveratrol is a natural herbal agent that has shown interesting anti-cancer properties. It has been shown to kill cancer cells selectively while protecting normal cells. Resveratrol can augment reduction/oxidation (redox) reactions, thus increases the production of ceramide and the expression of apoptosis receptors, such as Fas Ligand (FasL). Resveratrol also triggers some pathways which induce the mitochondrial pathway of apoptosis. On the other hand, resveratrol has an inhibitory effect on anti-apoptotic mediators, such as Nuclear Factor κ B (NF-κB), Cyclooxygenase-2 (COX-2), Phosphatidylinositol 3– Kinase (PI3K), and mTOR. In this review, we explain the modulatory effects of resveratrol on apoptosis, which can augment the therapeutic efficiency of anti-cancer drugs or radiotherapy

    Therapeutic Effects of Gallic Acid in Regulating Senescence and Diabetes; an In Vitro Study

    No full text
    Gallic acid (GA), a plant-derived ubiquitous secondary polyphenol metabolite, can be a useful dietary supplement. This in vitro study’s primary purpose was to assess the anti-aging properties of GA using rat embryonic fibroblast (REF) cells, antidiabetic effects via pancreatic islet cells, and finally, elucidating the molecular mechanisms of this natural compound. REF and islet cells were isolated from fetuses and pancreas of rats, respectively. Then, several senescence-associated molecular and biochemical parameters, along with antidiabetic markers, were investigated. GA caused a significant decrease in the β-galactosidase activity and reduced inflammatory cytokines and oxidative stress markers in REF cells. GA reduced the G0/G1 phase in senescent REF cells that led cells to G2/M. Besides, GA improved the function of the β cells. Flow cytometry and spectrophotometric analysis showed that it reduces apoptosis via inhibiting caspase-9 activity. Taken together, based on the present findings, this polyphenol metabolite at low doses regulates different pathways of senescence and diabetes through its antioxidative stress potential and modulation of mitochondrial complexes activities

    Cannabinoids as anti-ROS in aged pancreatic islet cells

    Get PDF
    Aims: Cannabinoids are the chemical compounds with a high affinity for cannabinoid receptors affecting the central nervous system through the release of neurotransmitters. However, the current knowledge related to the role of such compounds in the regulation of cellular aging is limited. This study aimed to investigate the effect of cannabidiol and tetrahydrocannabinol on the function of aged pancreatic islets. Main methods: The expression of p53, p38, p21, p16, and Glut2 genes and β-galactosidase activity were measured as hallmarks of cell aging applying real-time PCR, ELISA, and immunocytochemistry techniques. Pdx1 protein expression, insulin release, and oxidative stress markers were compared between young and aged rat pancreatic islet cells. Key findings: Upon the treatment of aged pancreatic islets cells with cannabidiol and tetrahydrocannabinol, the expression of p53, p38, p21 and the activity of β-galactosidase were reduced. Cannabidiol and tetrahydrocannabinol increase insulin release, Pdx1, Glut2, and thiol molecules expression, while the oxidative stress parameters were decreased. The enhanced expression of Pdx1 and insulin release in aged pancreatic islet cells reflects the extension of cell healthy aging due to the significant reduction of ROS. Significance: This study provides evidence for the involvement of cannabidiol and tetrahydrocannabinol in the oxidation process of cellular aging
    corecore