18 research outputs found

    Etude fondamentale du comportement au feu de composites silicones : stabilité thermique, résidus sous pyrolyse et tests calorimétriques

    No full text
    This PhD work has been devoted to the study of the thermal behavior of silicone composites. A preliminary review on the flame retardancy of silicone reported numerous works devoted to the development of thermally-resistant silicone composites or silicone polymers used as flame retardant agents in other organic polymer matrices. The first part of our experimental work highlighted the key role of macromolecular chain immobilization, through the synergy of platinum and silica, in generating high ceramized residue content after thermal gravimetry. The second part of this work was dedicated to the study of silicone composites filled with either calcium or aluminum-based fillers. The filler nature (non hydrated, water releasing or hydroxyl groups on the surface), the morphology and the particle size strongly influenced the thermal behavior of silicone composites. The analyses on composites residues after extreme pyrolysis showed that the formation of new crystalline structures and the absence of water release favored the residue ceramization. The investigation on fire reaction of silicone composites finally granted their outstanding properties to the matrix thermal stability and/or a barrier layer formation.Cette thèse avait pour but de comprendre le comportement thermique de composites silicones. Pour cela, une étude bibliographique complète sur le comportement au feu des silicones comme matrice ou en tant que retardateur de flamme a tout d'abord été réalisée. Ce travail a permis de définir une stratégie permettant d'améliorer la stabilité thermique de la matrice mais également du composite silicone. Une première étude expérimentale a été consacrée à l'étude de l'influence de l'ajout de platine et de silice sur le comportement thermique d'un composite silicone modèle. Nous avons pu montrer que l'immobilisation des chaînes macromoléculaires était le facteur clef pour une céramisation efficace. Dans une deuxième partie, des composites silicones dans lesquels nous avons incorporé des charges à base soit de calcium, soit d'aluminium ont été testés selon trois différents protocoles de dégradation thermique. Nous avons d'abord mis en exergue le fait que la nature chimique (charge non hydratée, contenant de l'eau ou portant des groupements hydroxyles en surface), la taille et la morphologie des charges influençaient fortement le comportement thermique du silicone. Nous avons ensuite montré que la formation de nouvelles structures cristallines et l'absence de libération de gaz dégradant la matrice conduisaient à des résidus très cohésifs, après pyrolyse extrême. Enfin, des tests calorimétriques ont montré que l'amélioration du comportement au feu des composites était liée à la stabilité thermique et/ou à la génération d'une couche barrière

    Fundamental study on the fire behavior of silicone composites : thermal stability, cohesion residues, and calorimeter tests

    No full text
    Cette thèse avait pour but de comprendre le comportement thermique de composites silicones. Pour cela, une étude bibliographique complète sur le comportement au feu des silicones comme matrice ou en tant que retardateur de flamme a tout d'abord été réalisée. Ce travail a permis de définir une stratégie permettant d'améliorer la stabilité thermique de la matrice mais également du composite silicone. Une première étude expérimentale a été consacrée à l'étude de l'influence de l'ajout de platine et de silice sur le comportement thermique d'un composite silicone modèle. Nous avons pu montrer que l'immobilisation des chaînes macromoléculaires était le facteur clef pour une céramisation efficace. Dans une deuxième partie, des composites silicones dans lesquels nous avons incorporé des charges à base soit de calcium, soit d'aluminium ont été testés selon trois différents protocoles de dégradation thermique. Nous avons d'abord mis en exergue le fait que la nature chimique (charge non hydratée, contenant de l'eau ou portant des groupements hydroxyles en surface), la taille et la morphologie des charges influençaient fortement le comportement thermique du silicone. Nous avons ensuite montré que la formation de nouvelles structures cristallines et l'absence de libération de gaz dégradant la matrice conduisaient à des résidus très cohésifs, après pyrolyse extrême. Enfin, des tests calorimétriques ont montré que l'amélioration du comportement au feu des composites était liée à la stabilité thermique et/ou à la génération d'une couche barrière.This PhD work has been devoted to the study of the thermal behavior of silicone composites. A preliminary review on the flame retardancy of silicone reported numerous works devoted to the development of thermally-resistant silicone composites or silicone polymers used as flame retardant agents in other organic polymer matrices. The first part of our experimental work highlighted the key role of macromolecular chain immobilization, through the synergy of platinum and silica, in generating high ceramized residue content after thermal gravimetry. The second part of this work was dedicated to the study of silicone composites filled with either calcium or aluminum-based fillers. The filler nature (non hydrated, water releasing or hydroxyl groups on the surface), the morphology and the particle size strongly influenced the thermal behavior of silicone composites. The analyses on composites residues after extreme pyrolysis showed that the formation of new crystalline structures and the absence of water release favored the residue ceramization. The investigation on fire reaction of silicone composites finally granted their outstanding properties to the matrix thermal stability and/or a barrier layer formation

    The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    No full text
    Intumescent Fire retardant coatings (IFRC’s) are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W) filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP) as acid source, expandable graphite (EG) as carbon source, melamine (MEL) as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm

    Calcium and Aluminium-Based Fillers as Flame-Retardant Additives in Silicone Matrices. III. Investigations on Fire Reaction

    No full text
    International audienceThe flame retardancy of silicone composites containing calcium- and aluminum-based fillers has been investigated using several methods including cone calorimeter, Pyrolysis Combustion Flow Calorimeter (PCFC), thermogravimetric analysis and pyrolysis-gas chromatography-mass spectrometry analysis (Py-GC/MS). The fire reaction of precipitated calcium carbonate, calcite, calcium hydroxide, aluminum trihydrate, boehmite and alumina-based composites was correlated mainly with their thermal stability, while for mica and wollastonite-based composites, a barrier effect was also evidenced. The endothermic effect was not established as an efficient flame retardancy mechanism for the silicone composites containing hydrated fillers. Mica composite exhibited the best flame retardancy, in terms of depressed HRR, among all investigated formulations. Finally, a unique behavior was observed during the cone calorimeter test of calcium hydroxide-based composite, which co-crystallization with silica occurs exclusively at high heat flux
    corecore