2,829 research outputs found

    The metallicity dependence of WR winds

    Get PDF
    Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the most massive stars. The strong feedback provided by these objects and their subsequent supernova (SN) explosions are decisive for a variety of astrophysical topics such as the cosmic matter cycle. Consequently, understanding the properties of WR stars and their evolution is indispensable. A crucial but still not well known quantity determining the evolution of WR stars is their mass-loss rate. Since the mass loss is predicted to increase with metallicity, the feedback provided by these objects and their spectral appearance are expected to be a function of the metal content of their host galaxy. This has severe implications for the role of massive stars in general and the exploration of low metallicity environments in particular. Hitherto, the metallicity dependence of WR star winds was not well studied. In this contribution, we review the results from our comprehensive spectral analyses of WR stars in environments of different metallicities, ranging from slightly super-solar to SMC-like metallicities. Based on these studies, we derived empirical relations for the dependence of the WN mass-loss rates on the metallicity and iron abundance, respectively.Comment: 5 pages, 4 figures, to be published in the Proceedings of the IAU Symposium No. 329 "The lives and death-throes of massive stars

    Wolf-Rayet stars in the Small Magellanic Cloud: I. Analysis of the single WN stars

    Full text link
    Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to 10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.Comment: 18+12 pages; 22+8 figures; accepted for publication in A&

    The rapid evolution of the exciting star of the Stingray Nebula

    Get PDF
    SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed UV and optical spectra, taken during 1988-2013, allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. We find that the central star has steadily increased its effective temperature from 38kK in 1988 to a peak value of 60kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log (dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from 1800km/s to 2800km/s. Since around 2002, the star stopped heating and has cooled down again to 55kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 Msun). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&

    Modeling Ultraviolet Wind Line Variability in Massive Hot Stars

    Full text link
    We model the detailed time-evolution of Discrete Absorption Components (DACs) observed in P Cygni profiles of the Si IV lam1400 resonance doublet lines of the fast-rotating supergiant HD 64760 (B0.5 Ib). We adopt the common assumption that the DACs are caused by Co-rotating Interaction Regions (CIRs) in the stellar wind. We perform 3D radiative transfer calculations with hydrodynamic models of the stellar wind that incorporate these large-scale density- and velocity-structures. We develop the 3D transfer code Wind3D to investigate the physical properties of CIRs with detailed fits to the DAC shape and morphology. The CIRs are caused by irregularities on the stellar surface that change the radiative force in the stellar wind. In our hydrodynamic model we approximate these irregularities by circular symmetric spots on the stellar surface. We use the Zeus3D code to model the stellar wind and the CIRs, limited to the equatorial plane. We constrain the properties of large-scale wind structures with detailed fits to DACs observed in HD 64760. A model with two spots of unequal brightness and size on opposite sides of the equator, with opening angles of 20 +/- 5 degr and 30 +/- 5 degr diameter, and that are 20 +/- 5 % and 8 +/- 5 % brighter than the stellar surface, respectively, provides the best fit to the observed DACs. The recurrence time of the DACs compared to the estimated rotational period corresponds to spot velocities that are 5 times slower than the rotational velocity. The mass-loss rate of the structured wind model for HD 64760 does not exceed the rate of the spherically symmetric smooth wind model by more than 1 %. The fact that DACs are observed in a large number of hot stars constrains the clumping that can be present in their winds, as substantial amounts of clumping would tend to destroy the CIRs.Comment: 58 pages, 16 figures, 1 animation. Accepted for publication in The Astrophysical Journal, Main Journal. More information and animations are available at http://alobel.freeshell.org/hotstars.htm

    A High-Velocity Narrow Absorption Line Outflow in the Quasar J212329.46-005052.9

    Get PDF
    We report on a variable high-velocity narrow absorption line outflow in the redshift 2.3 quasar J2123-0050. Five distinct outflow systems are detected with velocity shifts from -9710 to -14,050 km/s and CIV 1548,1551 line widths of FWHM = 62-164 km/s. These data require five distinct outflow structures with similar kinematics, physical conditions and characteristic sizes of order 0.01-0.02 pc. The most likely location is ~5 pc from the quasar. The coordinated line variations in <0.63 yr (rest) are best explained by global changes in the outflow ionization caused by changes in the quasar's ionizing flux. The absence of strong X-ray absorption shows that radiative shielding is not needed to maintain the moderate ionizations and therefore, apparently, it is not needed to facilitate the radiative acceleration to high speeds. The kinetic energy yield of this flow is at least two orders of magnitude too low to be important for feedback to the host galaxy's evolution.Comment: 20 pages. In press with MNRA

    Massive stars and the energy balance of the interstellar medium. II. The 35 solar mass star and a solution to the "missing wind problem"

    Full text link
    We continue our numerical analysis of the morphological and energetic influence of massive stars on their ambient interstellar medium for a 35 solar mass star that evolves from the main sequence through red supergiant and Wolf-Rayet phases, until it ultimately explodes as a supernova. We find that structure formation in the circumstellar gas during the early main-sequence evolution occurs as in the 60 solar mass case but is much less pronounced because of the lower mechanical wind luminosity of the star. Since on the other hand the shell-like structure of the HII region is largely preserved, effects that rely on this symmetry become more important. At the end of the stellar lifetime 1% of the energy released as Lyman continuum radiation and stellar wind has been transferred to the circumstellar gas. From this fraction 10% is kinetic energy of bulk motion, 36% is thermal energy, and the remaining 54% is ionization energy of hydrogen. The sweeping up of the slow red supergiant wind by the fast Wolf-Rayet wind produces remarkable morphological structures and emission signatures, which are compared with existing observations of the Wolf-Rayet bubble S308. Our model reproduces the correct order of magnitude of observed X-ray luminosity, the temperature of the emitting plasma as well as the limb brightening of the intensity profile. This is remarkable, because current analytical and numerical models of Wolf-Rayet bubbles fail to consistently explain these features. A key result is that almost the entire X-ray emission in this stage comes from the shell of red supergiant wind swept up by the shocked Wolf-Rayet wind rather than from the shocked Wolf-Rayet wind itself as hitherto assumed and modeled. This offers a possible solution to what is called the ``missing wind problem'' of Wolf-Rayet bubbles.Comment: 52 pages, 20 figures, 2 tables, accepted for publication in the Astrophysical Journa

    The XMM-Newton EPIC X-ray Light Curve Analysis of WR 6

    Full text link
    We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 d period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for "event clustering" in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a co-rotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.Comment: to appear in Ap

    The Nature of the UV/X-Ray Absorber in PG 2302+029

    Get PDF
    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km/s) UV absorption lines that form in an outflow from the active nucleus (Jannuzi et al. 2003). The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to detemine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (log U=1.6, N_H=10^22.4 cm^-2) over predict the O VI 1032, 1038 absorption unless the X-ray absorber is also outflowing at ~56,000 km/s, but they over predict the Ne VIII 770, 780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of < 10^15 cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.Comment: Accepted for Publication in Ap
    corecore